OK Geometry Plus
 Reference for OK Geometry Plus (v.19)
 Zlatan Magajna

April 2022

Contents

1 Introduction 4
2 Observing and creating triangle objects 5
2.1 The help system 5
2.1.1 The Glossary 5
2.1.2 Triangle commands 6
2.2 Simple observation of triangle objects 7
2.3 Special commands for triangles. 10
2.4 Cyclic constructions. 17
2.5 Examples. 21
2.6 Advanced triangle analysis 29
2.6.1 Accessing the Triangle analysis module 30
2.6.2 Triangle analysis scheme 30
2.6.3 Observed results 34
2.6.4 Object analysis 35
2.6.5 Fast centres analysis 37
2.6.6 Rule-points analysis. 38
2.6.7 Triangle perspectivity analysis 40
3 Advanced query of objects43
3.1 Query commands. 43
3.2 Known, unknown and auxiliary objects 44
3.3 Advanced query examples 47
4 Observing algebraic relations (formulae) 53
4.1 Introduction 53
4.2 Observe formulae - simple 54
4.2.1 Comments on observed formulae. 56
4.2.2 Setting the parameters for observing formulae. 57
4.2.3 Managing the results of Observe formulae. 57
4.2.4 More examples. 58
4.3 Observe formulae - advanced 60
4.3.1 Comments on observed formulae. 62
4.3.2 Symbolising geometric quantities 63
4.3.3 More examples 64
4.4 Observing formulae - triangle. 65
4.4.1 Comments on observed formulae 67
4.4.2 Geometric quantities of the reference triangle 68
4.4.3 More examples. 69
5 Generic constructions 71
5.1 Introduction 71
5.2 Working with generic constructions (an overview) 73
5.2.1 Attaching rules to operations 74
5.2.2 Accessing examples of generic constructions 75
5.2.3 Creating a selection of examples 77
5.2.4 Fast scan of conditions criteria 79
5.2.5 Observing properties in examples 80
5.3 Rules (generic operations) 82
5.3.1 Rules for creating simple objects 86
5.3.2 Rules for transforming simple objects 88
5.3.3 Triangle A-points 89
5.3.4 Rules for triangles and quadrilaterals on a segment. 90
5.3.5 Rules for triangle objects. 91
5.3.6 Editing rules 91
5.4 Examples of generic constructions 92
5.5 Triangle analysis of generic constructions 97
5.6 Formulae observation in generic constructions 100

1 Introduction

OK Geometry Plus is an extension of OK Geometry Basic. This document should therefore be thus considered a continuation of the OK Geometry Basic references.

OK Geometry Plus consists of four independent modules, all fully integrated into OK Geometry Basic.
The first module is dedicated to triangle geometry. It deals with many objects and operations commonly used in triangle geometry. Not only can you construct such objects, but you can also observe how a geometric object relates to an extensive set of triangle objects.

The second module provides a more in-depth query of objects in a dynamic construction. It relates a given object not only to other objects in the configuration, but also to many other objects derived from the given object. Thus, it can be of great use in hypothesising solutions to construction problems.

The third module observes algebraic relationships between geometric quantities in dynamic constructions. It can help you hypothesise how a geometric quantity (distance, radius of a circle, area of a triangle, etc.) is related to other geometric quantities in the configuration.

Finally, the fourth module deals with generic constructions. You can think of generic constructions as families of constructions obtained with different operations at certain construction steps. This module allows you to create families of dozens or even hundreds of different constructions at the same time. The entire family of constructions can be observed simultaneously, you can also perform triangle analysis or algebraic observation on the family.

The Plus mode of OK Geometry can be accessed via the command Configure/Working mode/Plus in the main menu.

Figure 1

2 Observing and creating triangle objects

The core of OK Geometry Plus is a large database of

- triangle centres (e.g. symmedian point, currently more than 45000 of them),
- triangle related triangles (e.g. orthic triangle, currently more than 230 of them),
- triangle related lines (e.g. Euler line, currently 11 lines, more that 2500 including those of related triangles),
- triangle related circles (e.g. 9-point circle, currently 36 circles, more than 7500 including the characteristic circles of related triangles),
- triangle related conics (e.g. Feuerbach hyperbola of a triangle, currently 37 conics),
- triangle operations that associate a point, line, circle, triangle, or conic to a given point (e.g. isogonal conjugation of a point, currently 49 operations).

The database elements can be used directly in constructions as well as in observation of objects. The Plus mode comprises three main procedures:

- Simple observation of triangle objects
- Using triangle objects in constructions, cyclic constructions
- Advanced observation of triangle objects

In the final section we present some examples.
Triangle geometry involves a multitude of concepts (various objects and operations). In order to facilitate the work, a help system was developed. It is explained in the section that follows.

2.1 The help system

The help system of OK Geometry Plus consists of two tools: Triangle commands and (triangle) Glossary. Both tools are accessible in all triangle related texts in OK Geometry, including in texts inside the tools themselves.

2.1.1 The Glossary

The (triangle) Glossary can be accessed with the command Help/Glossary or with the F1 key. For a given term the glossary provides a list of concepts related to that term. We explain how to use of glossary with an example.

Suppose we come across the term 'Gergonne point'. We may not know what it is and where to look in OK Geometry for the related commands. We call up the Glossary (by pressing F1) and enter the (approximate) term - for example 'gergone'. In the form a list of about 20 articles appears, listed in decreasing relevance:

- first, the articles that contain the searched term (or a similar term) in their title,
- then, the articles (preceded by -) that contain the searched term (or a similar term) in the explanatory text,
- finally, (preceded by - -) the centres form ETC (Encyclopaedia of Triangle Centres) that contain the term (or a similar term) in the name of the centre.

A click on any article will provide the information in that article. In our case, we click the first item ('Gergonne point'), and the form is filled in, see Figure 2.

Figure 2
The form contains a description and an illustration of the selected term. Since there is a command related to the Gergonne point, the description also contains the location of the command in the menu (first line) and the arguments of the command.

A right click on the description leads to a menu with further help.
Explain terms turns the cursor into a question mark with an arrow. A click of the arrow on a term in the description (e.g. 'incircle') shows an explanation of the meaning of the term (possibly including the adjacent words).

Glossary help turns the cursor into a spider. A click of the spider on a term in the description activates the glossary for that term.

Execute command is active only in the Sketch Editor. It activates the form that contains the considered command. In our case to the list of triangle centres where we can select the command Gergonne point.

2.1.2 Triangle commands

The Help/Triangle commands displays the list of all commands for the creation of triangle related objects and operations. The list can be restricted to commands that create a specific type of objects. For each command there is a description, which has the same functionality as the description in the glossary. The command can be therefore activated by a right click on the description.

2.2 Simple observation of triangle objects

We describe here how to relate constructed objects to a specific triangle - called the reference

triangle.

We explain this with a simple example ${ }^{1}$.

Example

Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the base points of the altitudes from the vertices A, B, C of the triangle $\triangle A B C$.
Furthermore, let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ be the midpoints of $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}$, and $A^{\prime} B^{\prime}$. By observing the configuration or otherwise, we note that the lines $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$ (apparently) meet in a common point P. We wonder how is this point related to $\triangle \mathrm{ABC}$ (Figure 3).

If we are not in Plus mode, we need to switch to it - from the menu at the top select the command Configure/Working mode/Plus .

Then click on the command
(Analyse objects in reference triangle) on the taskbar on the right. If the reference triangle has not been defined yet, first enter the labels of the points that define the reference triangle (Figure 4). The reference triangle is coloured pale yellow. You can declare the reference triangle at any time with the command Comands/Set reference triangle.

Then click on the objects you want to know something about, in our case the point P .

Figure 3

[^0]

Figure 4
After a short calculation a form appears with the observational results (Figure 5).

Figure 5
OK Geometry observes that the point P appears to be the symmedian point (commonly denoted as $X 6$) of the triangle $\triangle A B C$ and presents some additional observed facts related to the point P. To view more information about the object P, click on the More or the Extensive button.

The objects that are mentioned in the list of properties can be readily displayed. For example, to display the Fermat line, put the text Fermat line in a block (or simply position the cursor on the text) and click the Show command - the Fermat line will appear on the construction (Figure 6). To add at once several objects mentioned the list to the construction, simply put the objects in a block and click the Show command.

Figure 6
You can also obtain an explanation of the terms in the list of properties. For example, to obtain some basic information of the Fermat line (or some other term), click on the Whatls command (a question mark with arrow will appear) and then click on the term with the (question mark) pointer. An explanation of the Fermat line will appear (Figure 7).

Figure 7
Finally, there is a glossary that relates the terms in the list of properties to other similar terms in triangle analysis. For example, to find articles related to symmedian point, click on the Glossary command (a spider pointer will appear) and then click on the term Symmedian point with the (spider) pointer The list of articles related to symmedian will appear (Figure 8).

Figure 8
Some additional commands related to the form (Figure 5) are available with a right-click on the Description field.

In the form (Figure 5) we can specify the range of points (from the ETC list of triangle centres ${ }^{2}$) to be used in the analysis. A complete analysis considers up to the first 16342 points, a somehow restricted and less reliable analysis takes account of more than 45000 points.

2.3 Special commands for triangles

The Sketch Editor in Plus mode has an additional group of commands named Special. All commands in this group are specific to triangle geometry and most of them have similar syntax.

The Special commands allow you to construct various objects related to a triangle. The triangle the objects refer to is called the reference triangle. Since the same triangle is often used repeatedly as a reference triangle, it is common to declare a default reference triangle and use it for most commands in the group. This is done with the command Commands/Set reference triangle or Special/Set reference triangle.

The commands in this group (with a few exceptions) refer to the default reference triangle, but it is always possible to specify a different reference triangle as the first argument of the command. Figure 9 shows a typical group of commands (characteristic objects of a triangle). Note the red line with the checkmark at the bottom, which indicates that the default reference triangle will be used unless the

[^1]checkmark is removed. Also note the checkmark See picture. When this checkmark is set, a pictorial representation of the object appears on the right side.

Figure 9
In many cases the form contains dozens, hundreds, or even more (sub)commands. Sometimes they are grouped by the type of object to be created. To make the selection easier, you can arrange the (sub)commands alphabetically. There is also a filter to reduce the number of entries in the list. If you enter 'malfatti' in the filter, only entries that contain the string 'malfatti' will be displayed. If you type 'malfati?', only entries containing something similar to 'malfati' will be displayed in the list.

The Special commands menu the commands are grouped according to the input objects:

	Triangle centres are organised in five lists: - simple centres - the four classic triangle centres; - advanced centres - the most known centres, e.g. isodynamic point; - ETC centres - the first 16341 centres of the ETC list of triangle centres; - ETC + centres - the centres from 16342 on of the ETC list of triangle centres; - bicentric - some well known triangle bicentres, e.g., the Brocard points. A standard notation is used for the centres from the ETC list: $\mathrm{X}_{n}, \mathrm{Xn}$ or $\mathrm{X}(n)$ for the n-th centre.
Triangle derived objects	The classic triangle objects, other than points, are organised in several lists: - triangle lines, e.g., the Euler line; - triangle circles, e.g., the Brocard circle;

	- triangle triangles, e.g., the orthic triangle; - triangle conics, e.g., the Kiepert hyperbola.
Triangle/Point derived objects	Various objects can be associated to a point with respect to a reference triangle. Such objects are organised in several lists, depending on the type of the objects. The considered type of resulting objects are: - points, e.g., the isogonic conjugation of a point in a reference triangle; - lines, e.g., the trilinear polar of a point in a reference triangle; - circles, e.g., the Cevian circle of a point; - triangles, e.g., the pedal triangle of a point in a reference triangle; - conics, e.g., the inconic of a point.
Triangle/Point/Point derived objects	The objects that are defined by 2 points with respect to the reference triangle are organised into these groups: -points, e.g., cross conjugate of two points; -conics, e.g., bicevian conic of two points.
Objects by triangle centres	This command allows an effective way to define and visualise triangle related objects passing through specified triangle centres. Simply enter the centres as indicated by the following examples: 5 ETC centre $X(5)$, nine points centre 1-100 The first 100 centres (non all labelled) $(2,14)$ The line through $X(2)$ and $X(14)$ $(2,14,15)$ The circle through $X(2), X(14), X(15)$ $(5,6,7,8,9)$ The conic through $X(5), X(6), X(7), X(8), X(9)$ $2,4,(3,6)$ The centres $X(2)$ and $X(4)$ and the line through $X(3)$ and $X(6)$
General triangle derived point	With this command you can analytically define points, point transformations or point operations in a reference triangle. In the definition you can use barycentric, trilinear or tripolar coordinates as well as some triangle parameters. See Figure 11 for an example.
Various constructions	Here are collected various constructions of points, lines, circles, and conics with various input objects. We list only some remarkable examples: - perspectivity centre of two triangles (if it exists); - orthology centre of two triangles (if it exists); - parallelogy centre of two triangles (if it exists);

	- cyclology centre of two triangles (if it exists); - trilinear pole of a line wrt. A triangle; - perspective axis of two triangles (if it exists); - the perspeconic conic of two perspective triangle. The commands in this group do not make use of the default reference triangle.
Set reference triangle	With this command you define the reference triangle, which is (optionally) used by default in other special commands. The vertices of the reference triangle must be labelled. To clear the reference triangle enter in the form an empty line. OK Geometry uses standard notation for geometric quantities that refer to the reference triangle (or to the triangle that takes the place of the reference triangle). If the vertices of this triangle are PQR (in that order), then a, b, c denote the lengths of the sides $a=\|Q R\|, b=\|R P\|, c=\|P Q\|$. The sizes of the angles are denoted by A (size of the angle at P), B (size of the angle at Q), C (size of the angle at R) and so on.
A triangle	This command is active only at the very beginning of the construction. It generates a 'random' triangle ABC with labelled vertices and its cyclic structure.
Declare cyclic objects	With this command you declare three objects (of the same type) as cyclic in accordance to the current cyclic construction. When the Sketch Editor is creating a 'cyclic construction', any command that involves one or more cyclic objects is repeated cyclically on the related triads of objects. Cyclic structure often significantly simplifies geometric constructions on triangles. Please, refer to section 0 for more.
Cyclic construction	Turns the Cyclic construction flag ON and OFF. At ON, the display pointer takes the shape similar to a small circle and the commands are executed cyclically with respect to the reference triangle. Cyclic structure often significantly simplifies geometric constructions on triangles. Please, refer to section 0 for more.
Observe formulae in triangle	The command starts the form for the observation of algebraic relations between geometric quantities in the reference triangle. Please, refer to Section 4.4 for more.
Analyse object in reference triangle	The command executes a simple observation of the object you click on (see Section 2.2). If no reference triangle has been defined yet, you will be first asked to specify the reference triangle. Then click on an object (existing

	point, line, circle, conic). After a while, OK Geometry displays a form with a list of observed properties of the object in relation to the reference triangle. Click on the More or Extensive button for a longer or an extensive list of observations. To inspect other objects, click Continue and select the next object to be analysed. Here are some illustrative observations: - The selected point is the centre $X(42)$ of the reference triangle. - The selected line is tangent to the nine-point circle of the reference triangle. - The selected point is the intersection of the lines $X(6) X(9)$ and $X(5) X(7)$. - The selected line passes through $X(21)$ and the isogonal conjugate of $X(35)$. Note. See Section 2.2 for an exhaustive description of the command. Note. Right click on the displayed results: there are several available commands to visualise and obtain information about the listed objects (place the cursor set a block in the text appropriately). Note. This command is intended for a quick analysis. For a more elaborated analysis, see Section 2.6.

All commands for triangle centres and other objects related to a triangle are used in a similar way. Suppose we are looking for the circumcevian triangle of a given point with respect to the reference triangle. Since our object is defined by the reference triangle and a point, choose the Triangle/Point derived objects command. In the form that appears (Figure 10), first select the 'Triangle' option (since the resulting object is a triangle). From the listed operations, select the option Circumcevian. Notice the option in the lower left corner: If a reference triangle was previously defined, specify whether you want to use the already defined reference triangle or another triangle. As you can see, the form contains a short description of the operation with an optional illustration (option 'See picture').

Figure 10
Here is a detailed description of the steps to follow:

1. Select the type of the resulting object (in the above case choose between Point, Line, and Triangle). A list of available objects/operations appears. Select 'abc' option if you want the list to be arranged alphabetically.
2. Select the object or operation from the displayed list. A short description of the object/operation appears. If you want an illustration of the description, select the 'See picture' option.
3. If a reference triangle has previously been defined, you can use it as a reference triangle for the operation. (You don't see this check box if the reference triangle has not been set.)
4. Click OK and select the involved objects:

If 'Use ref. triangle' is ON	If 'Use ref. triangle' is OFF or is not present
1. Since the reference triangle already defined, you only need to select the additional arguments (depending on the command, there can be none, one point or two points).	1. ALWAYS specify the reference triangle first. Either pick its three vertices OR pick the polyline consisting of the of the triangle. 2. Select the additional arguments (depending on the command, it can be none, one point or two points).

The usual way to obtain a triangle object is as follows:

- Consider the defining objects of the object to be created: this can be a triangle, a triangle and a point, a triangle and 2 points. Then choose the command Triangle Centres or Triangle Derived objects, Triangle/Point objects, Triangle/Point/Point objects.
- In the form select the type of objects you want to create (Point, Line, Circle, Conic).
- Select the triangle object from the list of objects.
- Checkmark whether you want to use the existing reference triangle or not.
- Click the button OK.
- If you decided not to use the reference triangle, set the triangle as the first argument, either by clicking its vertices or by clicking a corresponding polyline.
- Click the remaining point type arguments if necessary.

Some constructions, that are sometimes used in triangle geometry and do not comply with the above description, are grouped in the Various constructions command.

To get to the desired command you can always use the Help/Triangle commands help or the F1 button on the keyboard (glossary).

The basic objects in triangle geometry are the triangle centres. You can get a triangle centre in several ways:

- via the triangle name (e.g., Nagel point or X8) using the command Triangle Centres;
- via the ETC number of the centre with the command Objects by triangle centres (you can draw several centres and other triangle objects at once);
- via the trilinear, barycentric or tripolar coordinate of the point with the command General triangle derived point.

In the following example (Figure 11) we define analytically a point relative to the reference triangle. Let the barycentric coordinates of the point be $\left(b^{2}+c^{2}, c^{2}+a^{2}, a^{2}+b^{2}\right)$, where a, b, c are the sides of the reference triangle.

Figure 11

If you want to define a point relative to another triangle (and not to the current reference triangle), uncheck the 'Use of reference triangle' box. After clicking on the OK button you will be asked to specify the vertices of the vertices of this triangle.

2.4 Cyclic constructions

Triangle constructions are often cyclic, that is they take into consideration the cyclic structure of the triangle. The cyclic structure consists of ordered triads of objects. We say that an operation is performed cyclically if the involved arguments are permuted cyclically according to the cyclic structure. Thus, a cyclic operation in a construction creates a triad of objects of the same type that is added to the existing cyclic structure. It is good practice to avoid triads with identical objects.

The Sketch Editor command Special/A triangle creates a triangle with cyclic structure consisting of three vertices and three sides of the triangle. The Cycl flag indicates whether the current operation is to be executed as cyclic or normal (Figure 12). When the Cycl flag is ON, it is bright and the mouse cursor takes the shape of a small circle. You can change the Cycl flag with a click on it or using the command Special/Cyclic construction. When a command is executed as cyclic, the resulting triad of objects is automatically added to the cyclic structure. You can add a triad of object to the cyclic structure also with the command Special/Declare cyclic objects.

Figure 12
By considering the cyclic structure in triangle contructions makes the construction process much easier and faster. Also, the resulting figure is easier to understand, because the 'cyclic copies' of the constructed objects are bleached. (You can easily remove the bleaching with the command Action/Emphasise /Unmark all bleach.)

The easiest way to create cyclic constructions is to start with the command Special/A triangle. Then continue with other commands - but be sure to turn ON the Cycl flag ONLY when you want the operation to be cyclic (otherwise you will get identical copies of objects).

We illustrate how to do a cyclic construction with a simple example ${ }^{3}$ (Figure 13). On each side of the triangle $A B C$ we construct outwardly an equilateral triangle. Let the added vertices be $A^{\prime}, B^{\prime}, C^{\prime}$. It is known that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur in a point Q (the $1^{\text {st }}$ isogonic point). Moreover, let P be the centre of the circle through the points $A^{\prime}, B^{\prime}, C^{\prime}$.

[^2]

Figure 13

Here are the steps of this cyclic construction.

Step/Command	Comment
Special/A triangle	Obtain a triangle with the initial cyclic structure. Note that this command is active only if no object has yet been constructed.
Special/Cyclic	Cyclic construction is turned ON. (Note that the pointer assumes a circular form.) Alternatively, click on the Cycl flag.
Advanced/Shape / Equilateral triangle	Construct the equilateral triangle on the side CB (click vertex C, then B). Simultaneously, bleached equilateral triangles are constructed on the other two sides of the triangle ABC.
Actions/Label vertex	Label the new vertices $A^{\prime}, B^{\prime}, C^{\prime}$ Note. Labelling vertices is never considered a cyclic operation.
Line/Segment	Construct the segment AA'. Simultaneously two other cyclically defined segments (BB' and CC') are constructed. Note that the three segments concur in a point (1 ${ }^{\text {st }}$ isogonic centre P, to be constructed).
Special/Cyclic	Cyclic construction is turned OFF. This is necessary since command that follows should not be executed

	cyclically.
Point/Intersection	Construct the intersection point Q of segments BB' and CC'. It was necessary to set Cycl OFF, otherwise three coincident intersection points would be constructed.
Circle/Circle 3 obj	Construct the circle through A', B', C'. Note that Cycl is OFF.
Point/Centre of circle	Construct the point P. (The observation of triangle object P finds that P is X627 = ANTICOMPLEMENT OF X17.) Note that Cycl is OFF.

Example

Here is another nice example ${ }^{4}$: the Dao 6 point circle. Given is a triangle $A B C$. Let A^{\prime} be the centre of the circle through B that is tangent to the line $A G$ at G. Let $A^{\prime \prime}$ be the centre of the circle through C that is tangent to the line $A G$ at G. Obtain the circle centres $B^{\prime}, B^{\prime \prime}, C^{\prime}, C^{\prime \prime}$ cyclically. The 6 points A^{\prime}, $A^{\prime \prime}, B^{\prime}, B^{\prime \prime}, C^{\prime}, C^{\prime \prime}$ lay on a circle, called the Dao 6-point circle (Figure 12).

Figure 14

[^3]| Step/Command | Comment |
| :---: | :---: |
| Special/A triangle | Obtain a triangle $A B C$ with the initial cyclic structure.
 Note that this command is active only if no object has yet been constructed. |
| Specia/Triangle centres/Advanced/Centroid $X(2)$ | We do this step with the Cycl flag OFF. Label the centroid as G. |
| Special/Cyclic | Cyclic construction is turned ON. (Note that the pointer assumes a circular form.)
 Alternatively, click on the Cycl flag. |
| Line/Line 2 points | Pick the points A and G.
 The lines BG and CG are created automatically. |
| Circle/Circle 3 objects
 Point/Centre of circle | Pick the point G, the line $A G$ and the point B.
 Pick the created circle.
 At the same time you got 3 circles and then their centres. Label them as $A^{\prime}, B^{\prime}, C^{\prime}$. |
| Circle/Circle 3 objects Point/Centre of circle | Pick the point G, the line $A G$ and the point C.
 Pick the created circle.
 At the same time you got 3 circles and then their centres. Label them as $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$. |
| Special/Cyclic | Cyclic construction is turned OFF.
 We clear the Cycl flag before the Dao circle is drawn (otherwise we would get 3 copies of the circle).
 Alternatively, click on the Cycl flag. |
| Circle/Circle 3 objects | Construct the circle through $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$. |

2.5 Examples

Example 1 - The Privalov conic

It is well known that in a given triangle $A B C$ the vertices of the cevian triangles of any two different points D, E (not laying on the sidelines of $A B C$) are conconical (Figure 15, left) ${ }^{5}$. We consider the case of two particular points: the Gergonne point (D) and the Nagel point (E) of a given triangle $A B C$. The Gergonne point of $A B C$ is the point of concurrence of the line segments connecting the points where the incircle of $A B C$ touches the sides with the opposite vertices. Similarly, the Nagel point of $A B C$ is the point of concurrence of line segments connecting the points where the excircles touch the sides of $A B C$ with the opposite vertices (Figure 15, right) ${ }^{6}$.

Figure 15
Here is a quick and efficient way of executing this construction ${ }^{7}$:

Steps	Commands	Comment
1. Draw a triangle ABC	Point/Point (for A,B,C) Line/Polyline (to connect A-B-C-A) Special/Reference triangle	Obtain a reference triangle.
2. Position the Gergonne point D and the Nagel point E of ABC	Special/Triangle centres/Advanced/Gergonne point Special/Triangle centres/Advanced/Nagel point	Keep the check-mark for using the reference triangle, since we construct the Gergonne and Nagel points of a previously

[^4]| | | defined reference triangle $A B C$. |
| :---: | :---: | :---: |
| 3. Construct the Cevatriangles of D and E | Special\|Triangle point derived objects/Triangle/Cevian (choose then points D and E) | |
| 4. Construct the ellipse and the characteristic points of the ellipse | Circle/Conic 5 pts
 Point/Conic points | Label the centre of the ellipse as S. (Figure 16, left.) |
| 5. Inspect the centre S of the ellipse | Special\|Analyse object in reference triangle (pick S) | OK Geometry observes that S is the ETC centre X5452. (See Figure 16, right.)
 A more detailed inspection with Triangle analysis suggest that, for example:
 $S=$ Isogonal conjugate of the Cross conjugate of $X 6$ and D, or
 $S=$ Complement of the Isogonal conjugate of X 1486 , or S = Complement of the Isotomic conjugate of (X3434) |
| 6. Inspect the points on the constructed ellipse | Special\|Analyse object in reference triangle (pick the ellipse) | OK Geometry spots 3 centres along the ellipse (X3022, X3271, X4904). The extended search adds to this list 6 more transformed centres. |

Here is an even more effective construction.

Steps	Commands	Comment
1a. Draw a triangle ABC	Special/A, triangle	Obtain a reference triangle ABC.
2a. Position the Gergonne point D and the Nagel point E of ABC	Special/Objects by triangle centres In the entry write 7,8	Since X7 is the Gergonne point, X8 is the Nagel point of the triangle.
3a. Construct the Ceva- triangles of D and E	Special/Triangle point point derived objects/Conic/Bicevian conic (choose then points 7 and 8)	

4a. Construct the characteristic points of the ellipse	Point/Conic points	Label the centre of the ellipse as S.
Proceed as in steps 5 and 6 of the previous construction.		

Figure 16

Example 2 - Circum-side-circle

Given is a triangle $A B C$. A circle that has a side of $A B C$ as its diameter is called a side-circle of $A B C$. So each triangle has three side-circles. We are looking for a way to construct the circle that touches internally all three side-circles of $A B C$, hereby called the circum-side-circle of $A B C$ (Figure 17). ${ }^{8}$.

[^5]

Figure 17
The strategy in the construction below is to find the three points of contact of the circum-side-circle with the three side-circles.

Steps	Commands	Comment
1. Draw a triangle ABC	Point/Point (for A, B, C) Line\|Polyline (to connect A-B-C-A) Special\|Reference triangle	Try to make ABC visibly scalene.
2. Construct the three side-circles and the circum-side-circle	Point/Mindpoint/(pick ABC)On each segment Circle/Circle centre+point Circle/Circle 3 objects	Use repeatedly the Alt button (in the editor's menu bar to obtain the desired circle that is tangent to three objects.
3. Construct the three points of tangency A^{\prime}, B^{\prime}, C^{\prime} of the circum-side-circle	Point/Point	The Observe command reveals that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur in a point, say, P.
4. Construct the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ and the concurrency point P.	Line/Line 2 pts Point/Intersection	

| 5. Inspect the properties |
| :--- | :--- | :--- |
| of the point P in |
| reference triangle $A B C$ |\quad| Set ABC as the reference triangle. |
| :--- |
| Enter the Triangle analysis module. |
| Execute the Object analysis on the |
| point P. |\quad| 6. Obtain information |
| :--- |
| about the Paasche |
| point |\quad| In the Triangle analysis module |
| :--- |
| results place the cursor on X1123 and |
| click the Whatls button. |\quad| To obtain the basic information |
| :--- |
| about the Paasche point place |
| the cursor on this term and |
| right- click the Whatls |
| command (Figure 18). |

Figure 18
The Paasche point P of ABC can be constructed (using a homothety on a 'false' construction), and this gives way to the construction of the circum-side-circle. The construction steps are illustrated in Figure 19. A much more elegant way can be inferred with the Advanced query method described in Section 3.

The correctness of the construction via the Paasche point can be verified with algebraic means.

Figure 19

The circum-side-circle (Figure 17) is one of the 8 circles that are tangent to the three side-circles, see Figure 20^{9}. Here are some of the observed properties:

One of the 8 circles contains all three side-circles, this is the circum-side-circle with centre PO - the complement of the equal detour point $X(176)$.

Three of the 8 tangent circles are contained in exactly two of the side-circles, their centres are A_{2}, B_{2}, C_{2} (see Figure 20). The lines $A A_{2}, B B_{2}, C C_{2}$ concur at point $P_{2}-$ the Yiu-Pasche point $X(1659)$.

Three of the 8 circles are contained in exactly one of the side-circles, their centres are A_{1}, B_{1}, C_{1} (see Figure 20). The lines $A A_{1}, B B_{1}, C C_{1}$ concur at point P_{1} - the isogonal conjugate of the 3rd Kenmotu homothetic centre $X(5414)$.

One of the 8 circles is contained all three side-circles. Its centre is P_{3} - the complement of the isoperimetric point $X(175)$.

Figure 20

[^6]
Example 3 - Trisecting triangle perimeter by pedal triangle

Given is a triangle $A B C$ and a point D. The pedal triangle of D in $A B C$ has as its vertices the projections $A^{\prime}, B^{\prime}, C^{\prime}$ of the point D onto the sidelines of $A B C$. We are looking for a point D with the property that A^{\prime}, B^{\prime}, and C^{\prime} cut the perimeter of $A B C$ into three pieces of equal length (Figure 21), so that $\left|B^{\prime} A\right|+\left|A C^{\prime}\right|=\left|C^{\prime} B\right|+\left|B A^{\prime}\right|=\left|A^{\prime} C\right|+\left|C B^{\prime}\right| .^{10}$

Figure 21

The following steps lead to a reliable hypothesis for the sought position of point D. The strategy is to (1) construct a general triangle, a point D and the corresponding pedal triangle, (2) redefine D with an implicit construction, (3) analyse the new position of the point D, (4) make an improved check for the proposed position.

Steps	Commands	Comment
1. Draw a triangle ABC and a point D	Point/Point (for A,B,C) Line/Polyline (to connect A-B-C-A) Special/Reference triangle Point/Point (Construct a free point D.)	Try to make ABC visibly scalene.
2. Construct the pedal	Special / Triangle Point derived objects / Triangle / Pedal (Pick D.) triangle of D in ABC.	Note that ABC was previously set as a referrence triangle.

[^7]| 3. Construct the obtained 'pieces of perimeter' as polylines and measure their length. | Line / Polyline (Pick $\mathrm{B}^{\prime}, \mathrm{A}, \mathrm{C}^{\prime}$; repeat the command for $C^{\prime}, B, A^{\prime}$ and $A^{\prime}, C, B^{\prime}$.)
 Number \| Length circumference
 (Select the three constructed pieces.) | Name the lengths of the pieces as Len_A, Len_B, Len_C. |
| :---: | :---: | :---: |
| 4. Check the sought condition | Advanced \| Check | Equivalence |
 SameValues3 (Pick the values Len_A, Len_B, Len_C.) | Name the check as SameValues3. Obviously, it turns out as False. |
| 5. Implicit (re)construction of D. | Advanced / Implicit construction (Uncheck the restriction (OK); then pick the condition SameValues3 (OK) and the point D .) | The implicit construction should turn the condition to True. |
| 6. Analyse the position of the point D | Special \| Analyse object in reference triangle (Pick D.)
 OK observes that D is the centre X(165) - the centroid of the excentral triangle.
 To obtain a description of terms used in the result, position the cursor on it, right-click and use the command Whatls. | Note that most items in the results are marked as 'unreliable', or even 'great caution'. This happens when the construction is based on optimisation or implicit construction. |
| 7. Check the construction directly | Action \| Delete (pick the point D)
 Special \| Triangle centres | ETC | X165
 Repeat the steps 2-4. | Note that the check is now much more accurate since there are no implicit points in the construction. |

2.6 Advanced triangle analysis

The Triangle analysis module is an advanced observation tool for triangle objects. The Triangle analysis module relates (by observation) examined objects to the characteristic objects of the reference triangle. In the observation analysis, the module considers the ETC centres of the reference triangle, various specific triangle transformations, characteristic lines, circles, and conics of the reference triangle. The module is an extension of the Simple observation of triangle objects (Section 2.2).

The module performs three, actually four types of analysis:

- Object analysis relates points, lines, circles, conics, and triangles to the characteristic points (centres), lines, circles, conics, and triangles of the reference triangle. Finds, for example,
that the isogonal conjugation of the examined point P lays on the Kiepert hyperbola of the reference triangle.
- Fast centres analysis matches the centres of the examined triangle with the centres of the reference triangle. For example, finds that the centre X_{541} of the triangle $A B C$ coincides with the centre X_{54} of the triangle PQR.
- Rule-point analysis matches points constructed from triangle centres (of some triangle) with the centres of the reference triangle. For example, for each ETC centre Xn it finds whether the midpoint of X 1 and Xn is a known centre of the reference triangle.
- Triangle perspectivity analysis observes whether a given triangle is perspective to to one of the characteristic triangles of the reference triangle. It considers various types of perpectivity and also analyses the centres of perspectivity.
- Object analysis of generic constructions performs an automated analysis on a family of dynamic constructions. We will explain this type of analysis in Section 5.5.

Of the three types, Object analysis is the most commonly used.
The best way to learn how to use the module is to use examples. Since all three types of analysis have the same (or similar) parameters, modes of operation, and working procedures, we will first explain them. Then we will present some essential examples of the analysis.

2.6.1 Accessing the Triangle analysis module

To access the Triangle analysis module, click on the triangle (Δ) symbol on the main menu bar. Note that for a given construction the analysis can be performed only for objects that can be identified by labelled points on them. In particular, the vertices of the reference triangle should be labelled. Furthermore, the points, lines, circles, and conics to be analysed should contain (at least) 1,2,3,5 labelled points respectively.

2.6.2 Triangle analysis scheme

The best way to learn how to use triangle analysis is by using it. For this purpose some simple and advanced examples are provided (see Section 2.5).

Figure 22
The following description refers to Figure 22, which shows the form that appears on the left-side pane during the Triangle analysis. Note that, depending on the construction, some of the fields may be missing or may be disabled. We provide here a detailed description of the form used in the module.

Entry	Description
Object analysis	Here you select the type of analysis you want to perform. Fast centres analysis
Rule-points analysis	The analysis starts after you press the Study button.

Examined objects	In the entry, write the object(s) you want to examine in the analysis. Refer - to points as they are labelled, e.g. A^{\prime} or B or C3, - to lines by specifying two points on them, e.g. $A^{\prime} B$, - to circles by specifying three points on their circumference, e.g. $A^{\prime} B C 3$, - to conics by specifying 5 points on them, e.g. A'BC3DE. Multi-letter labels of vertices must be put in brackets, e.g. A(PQ3)B. Note. You can also specify two or more objects to be examined. Separate them with space or comma, e.g., A E'. In this case, a sequence of analyses is performed, one for each Examined object.
Reference triangle	Specify the reference triangle by naming its vertices, e.g. ABC. Analysis will use the centres and characteristic objects of the reference triangle when studying the examined object(s). Note. Avoid reference triangles that are isosceles or almost isosceles. In such triangles, many centres are unacceptably close together, so that OK Geometry refuses to perform the analysis. Note. It is possible to specify two or more reference triangles (separated by spaces or commas, e.g. ABC D1E'F). In this case, a sequence of analyses is performed, one for each specified reference triangle.
Additional reference points	Here you can specify (optional) points to be considered in the analysis, in addition to the ETC centres of the reference triangle.
Condition parameter	If a condition is selected in this entry, the analysis will be executed only if (or when) that condition is met, i.e. is true. Selecting a condition can be important when the studied construction - is based on an implicit construction, or - is based on the optimisation of a parameter, or - is a generic construction. In such situations, it may occur that the construction fails to succeed, so the analysis cannot or should not be performed. In the Sketch Editor you can define a condition (check) that is true if the analysis can be performed. Then use the condition as a condition parameter for the triangle analysis.
Considered centres	Here you specify the highest index of ETC triangle centres to be considered in the analysis. Note that the when the index greater than 16342 is chosen, the analysis is less reliable and not all tests will be performed. The more centres considered, the longer the computation will take and the more extensive list of results will be.

| Transformed |
| :--- | :--- |
| centres |\quad| Select this option if you want in the analysis to consider different triangle |
| :--- |
| transformations of the ETC centres of the reference triangle (or the examined |
| points).. |
| When this option is selected, the analysis finds facts like 'an examined point is |
| the cyclocevian of X68', or 'the complement of the examined point is the |
| isotomic conjugate of $X^{\prime} 25^{\prime}$. |

Report size	For the Object analysis the report size which can be - Minimal (only a few facts of the very basic properties are listed), - Short (the default option), - Extended (only the first 100 facts of all considered properties are listed) - All (all facts of all properties are listed; may result in a very long list of facts). For the Fast centres analysis and for the Rule-points analysis the report can be - Minimal (only the first few results are listed), - Short (only the first few results are listed), - Extended (the first 1000 results are listed), - All (all found facts are listed). For the Rule-points analysis the report can be - Minimal (refers to the first 20 examples of the ETC1 rule), - Short (refers to the first 100 examples of the ETC1 rule), - Extended (refers to the first 1000 examples of the ETC1 rule), - All (refers to all examples of the ETC1 rule).

2.6.3 Observed results

1. Once you completed the schema in Figure 22, you can start the analysis by pressing the Study button. The reported results of the analysis are displayed in the Observed results section. Figure 23 shows an illustrative example of part of the displayed results (the analysed object is a point D).
```
Observed results
The point D contains these ABC related points: (1 items, reliable)
        X15:1st ISODYNAMIC POINT
Transformed D matches these ABC related points: (1 items, reliable)
        D = X15:1st ISODYNAMIC POINT
The point D touches these ABC related circles: (1 items, reliable)
    Parry circle
(Possibly transformed) D lays on these ABC related conics: (1 items,
reliable)
    D on Evans conic
The point D lays on the these conics through vertices of ABC and.
(only X1-X31 are considered): (3 items, quite reliable)
    Conic!
        X2:CENTROID
        X16:2nd ISODYNAMIC POINT
    Conic:
        X3:CIRCUMCENTER
        X17:1st NAPOLEON POINT
    Conic:
        X6:SYMMEDIAN POINT (LEMOINE POINT, GREBE POINT)
        X14:2nd ISOGONIC CENTER
The point D lays on lines through these centres of ABC: (46 items,
quite reliable)
    Line:
        X1:INCENTER
        X1251:ISOGONAL CONJUGATE OF X(1082)
        X1276:2nd EVANS PERSPECTOR
        X1652:4th EVANS PERSPECTOR
```


2. The analysis can be performed several times in sequence. Simply enter the data, set the options, and press the Study button.
3. The reported results are always appended to the previous content of the section Observed results. At any time, e.g. before a new analysis is run, you can clear the content of the section Observed results with the Clear button.
4. The reports can be freely edited.
5. If you want to include a part of the Observed results in the OK Geometry report (i.e. the printable report of the project) for the studied construction, put this part of the results in a block and press the AddToReport button.
6. You can append a part of the Observed results to the comment of the current construction. To do this, put this part of the results in a block and press the AddToComment button.
7. To get an explanation of objects mentioned in the Observed results section, click on the Whatls button. The cursor then takes the form of a question mark with an arrow. If you click with the arrow on a term in the Observed result section, you will get an explanation of that term (sometimes the neighbouring words are also considered). For example, to find out the definition of the Parry circle or of X_{17}, press the Whatls button and click with the arrow of the questioncursor on 'Parry' or on ' X_{17} '.
8. To visualise on the construction one or more objects that are mentioned in the Observed results section, position the cursor on the name of the object to be shown or put in a block the objects to be shown. Then press the Show button. For example, to visualise X_{16}, position the cursor on X_{16} and press the Show button. To visualise the conic through $\mathrm{X}_{2}, \mathrm{X}_{16}$, and the vertices of the reference triangle, put in block the three lines from Conic to X_{16}, and press the Show button.
9. The Glossary help is accessible from the context menu when you right-click on the Observed results section. The command t turns the cursor into a spider. A click of the spider on a term in the Observed results section activates the glossary for that term.
10. To exit from the Analysis module, press the Exit button or press the (Δ) button in the main menu bar.
11.

2.6.4 Object analysis

The Object analysis of the Triangle analysis module observes the relationship between the examined objects and the characteristic objects of the reference triangle (ETC centres, characteristic lines, circles, conics). Essential data for the Object analysis is the reference triangle, named after its vertices, e.g. ABC. Essential is also one or more objects to be examined. They are identified by labelled points on them: one label refers to points (e.g. P), two labels to lines (e.g. PQ), three labels to circles and triangles (e.g. PQR), five labels to conics (e.g. PQRST). By filling in the Examined objects entry with ' $P Q P Q R$ ' we run the analysis on the points P and Q, the circle through P, Q, R and the triangle PQR.

Example

Here is an illustrative example of triangle analysis ${ }^{11}$.

[^8]```
- Observed results
The point H contains these ABC related finite points: (2 items,
reliable)
 Brissetransform(X
Transformed H matches these ABC related points: (11 items,
reliable)
 H = Brisse transform(X (X2982)
 Isogonal conjugate(H) = Brisse transform((}\mp@subsup{\textrm{Z2F0}}{260}{}
The point H}\mathrm{ touches these lines of the triangles related to
ABC: (1 items, reliable)
 Fermat line of Incircle-circles triangle
The point H lays on lines through these finite centres of ABC:
(18 items, quite reliable)
 Line: }\mp@subsup{\textrm{X}}{1}{},\mp@subsup{X}{7066}{},\mp@subsup{X}{11435}{
 Line: }\mp@subsup{X}{6}{},\mp@subsup{X}{6056}{
 Line: }\mp@subsup{X}{11}{},\mp@subsup{X}{118}{},\mp@subsup{X}{226}{},\mp@subsup{X}{354}{},\mp@subsup{X}{1362}{},\mp@subsup{X}{1864}{},
 Line: X48, }\mp@subsup{X}{51}{
 Line: }\mp@subsup{X}{55}{},\mp@subsup{X}{579}{
 Line: }\mp@subsup{X}{56}{},\mp@subsup{X}{581}{},\mp@subsup{X}{7420}{
Exit
```

Here is an excerpt of the results(some irrelevant lines have been deleted).

The observation shows that H is, for example, the Lozada perspector of $X(942)$, that the isogonal conjugate of H appears to be $\mathrm{X}(2260)$, that H is the intersection of the lines $X(1) X(7066)$ and $X(6) X(6056)$, etc.

To get an explanation of the Lozada perspector, first click on Whatls button first and then click on the term Lozada perspector.

To visualise objects from the report, put them in a block and click the Show command.

Other available functions are described in section 2.6.3.

### 2.6.5 Fast centres analysis

Fast centres analysis matches the centres of a triangle to the centres of the reference triangle.

## Example

Here is an illustrative example how to perform such analysis. ${ }^{12}$


[^9]

### 2.6.6 Rule-points analysis

Rule-centres analysis is a quick method of checking whether points constructed from the ETC centres of a triangle coincide with any ETC centre of the reference triangle. Rule-point analysis is performed on a generic construction, where a point, say $X$, is created with the ETC1 rule (for some triangle). This means that the point $X$ can occupy the position of various ETC centres of this triangle. The rulecentres analysis of the point $P$ which is constructionally dependent on point $X$. The analysis finds out whether the point $P$ coincides with a centre of the reference triangle as the point $X$ takes the place of the ETC centres of a triangle. It is a rather simple and fast operation.

Please, refer to Section 5.3.5 for details on ETC1 rule and the generic constructions. Also note that the triangle analysis on generic constructions (Section 5.5) allows more complex (but not so quick) observations on generic triangles.

## Example

Here is an illustrative example how to perform a rule-points analysis ${ }^{13}$.

[^10]|  | Given is a triangle $A B C$. For a point $X$, let $P$ be the circumcentre of the pedal triangle of $X$ in $A B C$. We investigate whether $P$ is a known centre of $A B C$ if $X$ takes the position of the first 1000 triangle centres of $A B C$. <br> In the generic construction we define the point $X$ by the ETC1 rule on the triangle $A B C$ (i.e., $X$ is a 'variable triangle centre' of $A B C$ ). <br> We construct the circle by projecting $X$ onto the sidelines of $A B C$. (Note that $A^{\prime} B^{\prime} C^{\prime}$ it is also available as the pedal circle of a point in a triangle). <br> Now switch to the Triangle analysis module. |
| :---: | :---: |
|  | Select Rule-points analysis as a Type of analysis. <br> We choose Extended for Report size, so that X takes the position of the first 1000 ETC centres |
|  | of $A B C$. <br> The positions of the point $P$ are matched with the first 3500 centres of $A B C$. If also the transformations of these centres (e.g., isogonal conjugation, isotomic conjugation) should also be considered, select the Transformed centres option. |
| ```Observed results Rule-points analysis: P matches ABC centre: (14 items, reliable) \(P\left(X_{1}: \operatorname{INCENTER}\right)=X_{1}: \operatorname{INCENTER~(ABC)}\) \(P\left(X_{2}\right.\) : CENTROID \()=X_{597}\) : MIDPOINT OF X(2) AND \(\mathrm{X}(6)\) (ABC) \(P\left(X_{3}:\right.\) CIRCUMCENTER \()=X_{5}\) : NINE-POINT CENTER (ABC) \(P\left(X_{4}\right.\) : ORTHOCENTER \()=X_{5}\) : NINE-POINT CENTER (ABC) P( \(X_{6}\) : SYMMEDIAN POINT (LEMOINE POINT, GREBE POINT) ) \(=X_{597}\) : MIDPOINT OF X(2) AND X(6) (ABC) P( \(\mathrm{X}_{13}\) : 1st ISOGONIC CENTER (FERMAT POINT, TORRICELLI POINT) ) \(=X_{396}\) : MIDPOINT OF X(13) AND X(15) (ABC) \(P\left(X_{14}\right.\) : 2nd ISOGONIC CENTER \()=X_{395}\) : MIDPOINT OF X(14) AND X(16) (ABC)``` | Here is the list of matches. For example, we find that if $X$ is the symmedian point of $A B C$ then the centre $P$ of the circle is the midpoint the centroid and the symmedian point of $A B C$. |

### 2.6.7 Triangle perspectivity analysis

With this analysis we investigate whether a triangle is perspective to different characteristic triangles of the reference triangle (e.g., the orthic triangle). The analysis considers up to 230 characteristic triangles of the reference triangle. For each triangle it is checked, whether it is perspective, parallelologic, orthologic or cyclologic to the examined triangle. In case of a positive result, the perspectivity centres are found - they are denoted as $\% 1, \% 2, \ldots$. The set of all found perspectivity centres is denoted $\mathrm{y} \% \%$.

## Example

Here is an illustrative example how to perform a rule-points analysis ${ }^{14}$.


Given is a triangle $A B C$. Consider the three circles with sides $B C, C A$, and $A B$ as their respective diameters. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points of contact of these circles with the circle that touches them all internally.

We examine if the triangle $A^{\prime} B^{\prime} C^{\prime}$ is perspective to any of the characteristic triangles of $A B C$.

Select Object analysis as Type of analysis.
We select All for Report size, so that all related triangles will be considered and all the results will be displayed.

Select Perspectivity centres, so that the found perspectivity centres are stored as points \%1, \%2, ...

Our reference triangle is $A B C$ and the examined triangle is $A^{\prime} B^{\prime} C^{\prime}$. (Note that its circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ will be examined as well).

The options Transformed centres and
Considered centres options will be taken into

[^11]

```
-Observed results
The point %1 contains these ABC related finite points: (1 items,
reliable)
 X X122: PAASCHE POINT
%2: Medial triangle of ABC and A'B'C' (perspective)
The point %2 contains these ABC related finite points: (1 items,
reliable)
 X
OF X(1659)
%3: Excentral triangle of ABC and A'B'C' (perspective)
The point %3 contains these ABC related finite points: (1 items,
reliable)
 X6213: PERSPECTOR OF EXCENTRAL TRIANGLE AND
INNER VECTEN TRIANGLE
%4: Soddy's inner triangle of ABC and A'B'C' (homothety)
The point %4 contains these ABC related finite points: (1 items,
reliable)
 X 1659: YIU-PAASCHE POINT
%5: Soddy's inner triangle of ABC and A'B'C' (orthologic)
Nothing found.
%6: A'B'C' and Soddy's inner triangle of ABC (orthologic)
Nothing found.
Exit
```

Here is a snippet of the results. We see that $X(1123)$ is the centre of perspectivity of $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$. Use What is to learn about the Paasche point and Show to display it.

Note that nothing about \%5 is found. To get more observational data, enter \%5 as Examined object, Increase Report size and perhaps checkmark Transformed centres.

## 3 Advanced query of objects

### 3.1 Query commands

The observation (Observe button) of a configuration provides a list of observed properties. The list is sometimes very long, so it is not easy to focus on the properties that are relevant to us. If you are looking only for properties that involve a specific object, you can use the query buttons (magenta coloured buttons on the right hand side of the displayed construction, e.g., ?• , ? $\triangle$, see Figure 24). The simple use of the query commands is explained in the OK Geometry Basic reference manual. In simple terms, the basic query operation filters the properties so that only properties pertaining to specified object are displayed.

When an object is queried, a row of dotted buttons appear above the list of properties (Figure 24, left). The number of dots on the buttons indicates the rigour of the query: the fewer the dots, the less extensive the information displayed, i.e. less relations with less objects are displayed.


Figure 24

For the sake of completeness, here are the descriptions of the commands associated to the query buttons:

| Command | Meaning |
| :--- | :--- |
| Mark/Toggle <br> unknown status | This command is used to mark/unmark objects that are considered <br> unknown (see Section 3.2). Objects marked as unknown are coloured pale- <br> green. Such objects are not considered in the query unless they are the <br> object of the query. A typical use of this function is the study of Euclidean |


|  | construction problems. In a complete construction, we mark objects that <br> need to be constructed from known objects. |
| :--- | :--- |
| Query labelled <br> point | Click on the point to be queried. In the left pane, only the properties related <br> to the queried point are listed. |
| Query-Segment | Click on the segment to be queried or its endpoints. In the left pane, only <br> the properties related to the queried segment are listed. |
| Query-Line | Click on the line to be queried or on two labelled points on it. In the left <br> pane, only the properties related to the queried line are listed. |
| Query-Circle | Click on the circle to be queried or on three labelled points on it. In the left <br> pane, only the properties related to the queried circle are listed. |
| Query-Triangle | Click on the labelled triangle vertices. In the left pane, only the properties <br> related to the queried triangle are listed. |
| Query-Angles | Click on the labelled points (ray, vertex, ray) or on the rays of the angle to <br> be queried. In the left pane, only the properties related to the queried angle <br> are listed. |

### 3.2 Known, unknown and auxiliary objects

By default, the query buttons in OK Geometry Plus have an additional functionality called advanced query. The advanced query operation of an object attempts to relate that object to a specified subset of objects (called known objects) in a configuration and also to many objects (called auxiliary objects) that are geometrically derived from the known objects.

The advanced query is of great help in hypothesising solutions to construction tasks. Namely, in construction tasks we start from some known objects and try to relate unknown objects to the already known ones. The advanced query can also reveal surprising relations between objects in a configuration in other situations.

Constructed objects are known by default. You can make an object unknown using the command
Action / Mark / Toggle unknown status, which is also accessible from the green dot button on the right side of the screen.

Advanced query is only available in OK Geometry Plus. It is enabled by default, but can be turned off in OK Geometry configuration (Configure/General options/Observe/Advanced query operations). Turning the Advanced query OFF will reduce the observation time.

Let us illustrate the use of advanced query with a very simple construction task:

## Example

Inscribe a square PQRS into a given triangle ABC , as shown in Figure 25 (left) ${ }^{15}$ ?


## Figure 25

First, we must somehow obtain a final configuration (Figure 25, left). The easiest way is to start with a square PQRS and draw an appropriate triangle ABC around it.

The known objects in our initial construction task are the vertices $A, B, C$ and the three sides of the triangle. The unknown objects are the vertices $P, Q, R, S$ and the four sides of the square.

Using the command Toggle unknown status (accessible via the green dot button ) we mark the unknown objects. Unknown points turn pale green, and the unknown lines turn dashed and pale green (Figure 25, right).
At this point we Observe the configuration. We obtain the usual list of properties of the configuration. On the far right of the display appear the magenta query buttons for querying specific objects. Advanced query occurs only when we query an unknown object (otherwise a simple query is performed).

We query the point $R$ with the Query point button on the point $R$ ). After a while, a short list of properties pertaining to the point $R$ appears. At the top of the list you can find new properties that involve auxiliary points derived from known objects. A click on the property visualises this property.

[^12]

Figure 26

For example: The property Lines invoving $R$ contains, among other, the relation
Lines invoving $R$
R, _360, _353
Note that you can get different names of auxiliary objects for the same relation, i.e. different numbers with underscore.

Clicking on the property displays the relation (Figure 26, left) ${ }^{16}$.
If you place the cursor on an auxiliary point in the construction, an explanation of the point will appear (you can activate the visual explanation by pressing the F8 button on the keyboard). In the example shown, _360 (or Y360)is the orthogonal projection of $C$ onto the line $A B$, and the point _353 (or Y353) is point A rotated by 90 degrees clockwise around B.

As usual, right-clicking the construction area opens a context menu with various commands that allow you to export the figure or edit it, include it in a project, etc. In this case the underscores in labels of auxiliary points become Y .

To get information about point $Q$, apply the Query point command ? to point $Q$ (no need to Observe again). Among the properties you will find one (Figure 26, right) that allows you to construct the point $Q$ (the auxiliary point _280 is the point A rotated anticlockwise around $B$ by 90 degrees).

Both properties shown are easy to prove.
Note. A change in the collection of unknown objects requires a new observation with Observe command.

[^13]
### 3.3 Advanced query examples

## EXAMPLE 1

In a circle sector with centre $S$ and $A, B$ as arc endpoints, there is a second arc. The centre of the second arc is the midpoint of AS, its endpoints are $A$ and a point $C$ on the segment BS.

Construct a circle that touches the two arcs and the segment BC . ${ }^{17}$


| Here is one of several suggestions to obtaining the point D : The point D lays on the line through the auxiliary points Y1486 and Y819, where <br> - $\quad$ Y1486 is the intersection of the circle $k(S, A)$ with the bisector of $A B$; <br> - Y819 ia the image of A rotated by 90 degrees counterclockwise around $B$. <br> Note that the displayed line does not contain the point C (as it might appear in the figure). |  |
| :---: | :---: |
| Once the point $D$ is known, it is recommended to mark it as known, and repeat the Observe procedure. The advanced query of the centre I gives several suggestions for the construction of I (obviously I lays on the segment SD). <br> According to one of the suggestions, the point I lays on the line through Y4011 and Y1897, where <br> - Y4011 is the syimmedian point of the triangle ADS, and <br> - Y1897 is the mirror image of the midpoint of $A D$ in point $D$. |  |

## EXAMPLE 2

The following example is the 25 th problem in the famous Wernick list of construction problems.
\(\left.\begin{array}{l}Construct a triangle A B C if the location of the <br>

following points of the triangle ABC is known:\end{array}\right\}\)| the vertex $A$, |
| :--- |
| the midpoint Ma of the side BC, |
| the intersection Ta of the angle bisector |
| at A and the side BC . |

[^14]

## Example 3

The following task is related to the Paasche point of triangle (Figure 18).
Given is a triangle ABC . In its exterior we want
to construct two congruent circles touching
each other externally, both touching the side
BC one touching the line AB and the other
touching the line AC .
We are looking for a solution that is nicer than
the solution via homothety of a false solution.
To study the construction, we create a
described configuration, starting from the
congruent circles.
If the vertices of a triangle are known in a
construction task, it is sometimes useful to add
one or more of its simple centres. A little
investigation (and common sense) shows that
the incentre I of the triangle ABC is such a point.
We also add some points as unknown points. If
we manage to construct one of them, the task
is solved.
We mark the two circles and the added points
P , Q R as unknown.
Then we start the observation.

[^15]First we query the point Q . OK Geometry suggests that $Q$ is the intersection of the line $B C$ and the line $Y_{19} Y_{686}$, where

- $\quad Y_{19}$ is one of the intersections of the circle through B, C, I and the line AI; it is also the antipode of $I$ in this circle; $I$
- $Y_{686}$ is defined by the condition: the angle $B C Y_{686}$ is a right angle; $|B C|$ : $\left|C Y_{686}\right|=2: 1$.

A solution can be found by querying the point $R$, but not $P$.


## 4 Observing algebraic relations (formulae)

### 4.1 Introduction

OK Geometry observes geometric properties as well as simple algebraic relations in dynamic constructions. When detecting simple algebraic relations with the Observe command in the main menu, OK Geometry considers a whole lot of geometric quantities: all distances between labelled points, all angles between labelled points, and areas of triangles with vertices on labelled points. OK Geometry, for example, detects whether the area of a triangle is the arithmetic mean of the areas of two other triangles in a configuration, or whether some angle between labelled points is twice as large as some other angle in the configuration.

OK Geometry is also capable of observing more complex algebraic relationships between selected geometric quantities in a configuration. This is accomplished with the Observe formulae commands that we describe in this section.

The Observe formulae command consists of three variants: simple, advanced, and triangle. The variants differ only in the way the geometric quantities are conveyed to the Observe formulae command.

- The simple variant searches for algebraic relations involving specified quantities, which were measured beforehand in the Sketch Editor.
- The advanced variant looks for algebraic relations that involve specified geometric quantities that need not to be measured beforehand.
- The triangle variant searches for algebraic relations between a specified geometric quantity or ratio of two quantities of a triangle and various unspecified geometric quantities of this triangle.


Figure 27
Figure 27 shows a simple illustration of the use of the Observe formulae commands. Given is a triangle ABC . Let $r i$ be the radius of its incircle. Furthermore, let $r a$ be the radius of the circle that
touches the sides $A B, A C$ and the incircle and lays between $A$ and the incircle. Define $r b$ and $r c$ cyclically. We wonder if there is a nice relationship between the radi ira, $r b, r c, r i .{ }^{22}$

The simple variant of the command Observe formulae requires that in the dynamic construction we first measure the radii of the four circles. Observe formulae then looks for algebraic relationships between the four radii and detects that:

$$
r i=\sqrt{r a \cdot r b}+\sqrt{r b \cdot r c}+\sqrt{r c \cdot r a}
$$

The advanced variant of the command Observe formulae performs a similar task, except that the considered quantities do not have to be measured beforehand in the Sketch Editor.

The triangle variant of the command Observe formulae examines only a single geometric quantity (length or area) or a ratio of two geometric quantities and tries to relate it algebraically to the reference triangle. The triangle variant, for example, detects the following relationships (rewritten by algebraic manipulation) for $r a$ :

$$
r a=r \cdot \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} \cdot \frac{1-\sin \frac{A}{2}}{1+\sin \frac{A}{2}}
$$

where $r$ is the circumradius of the triangle. It also detects the following expression for the ratio of ra:ri

$$
\frac{r a}{r i}=\frac{1-\sin \frac{A}{2}}{1+\sin \frac{A}{2}}
$$

It is important to keep in mind that the command Observe formulae merely observes whether geometric quantities satisfy some relations that can be (in some way) reduced to polynomial expressions. It does not prove the relations and it may also overlook existing relations. Thus, it is a useful heuristic tool for obtaining hypotheses that should be proved in a mathematically decent way. To prove and to geometrically interpret the mentioned algebraic observations related to Figure 27, for example, is a nice recreational task.

In the following sections we explain how to use the three variants of the Observe formulae command.

### 4.2 Observe formulae - simple

The three variants of the Observe formulae command can be accessed from the main menu Commands / Observe formulae (Figure 28). Note that the Triangle variant is available also in Sketch Editor menu as: Special/Observe formulae in triangle. You can switch between the variants (modes) while using the command. In this section we show how to use of the simple variant of the command.

[^16]

## Figure 28

We first explain the procedure on a very trivial example.

## Example

How does the area of an isosceles trapezium relate to its sides $a, b, c, d$ ? ${ }^{23}$

1. Provide a dynamic construction of the object(s) under consideration. The construction can be imported from some dynamic geometry software or created in OK Geometry Sketch Editor.
2. Measure the potentially relevant geometric quantities in the Sketch Editor. You can use the commands Number/Distance, Number/Radius, Number/Length or Number/Area. In our case we have measured the sides $a, b, c, d$ and the area $\operatorname{Ar}$ (Figure 29).


Figure 29
3. Apply the command Command/Observe formulae/Simple. A form appears. In the list of measured quantities, select the ones you think are relevant. In our case we have selected all of them. Then click the Observe button (Figure 29, left).

[^17]

Figure 30
4. OK Geometry looks for a polynomial relation of the lowest degree containing the selected variables. In our case there is a trivial relation $b=d$, which is certainly not of our interest. Therefore we unselect a redundant variable $b$ or $d$ and repeat the observation (Figure 30, centre).
5. The obtained polynomial relation usually requires additional algebraic manipulation, depending on your aesthetic standards and mathematical goals.
6. To add a further dynamic numerical test for the obtained relation, proceed as follows (Figure 30, right):
a. Put the considered algebraic relation in a block.
b. Right click on the relation and select the command Add as parameter in construction.
c. A parameter Fcondx is added to the dynamic construction. The parameter numerically checks the correctness of the equation in the block. You can dynamically modify the construction and observe if Fcondx has the value 'True'. Note that you can declare as a parameter only a part of the relation by putting in block only this part of the relation.

### 4.2.1 Comments on observed formulae

It is important to be aware of the status of the relations found regardless of the variant used (simple, advanced or triangle).

1. Observing formulae command considers specified geometric quantities of a dynamic construction in order to detect polynomial relationships between them or relations that can be reduced to a polynomial relationship of degree up to 4 . If several variables are involved, the maximal degree can be 3.
2. If one or more relations of a certain degree are found, Observe formulae will not search for relations of higher degree.
3. The observed algebraic relations are the result of numerical observations of the dynamic construction. The relations found are not proven and there is no guarantee they are correct. A
relationship can also be overlooked. In general, overlooking a relation occurs more likely than finding a relation that is not valid at least locally.

### 4.2.2 Setting the parameters for observing formulae

Observing formulae commands have a few options:

| Notation | The compact option uses some idiosyncratic notation that is explained in the <br> advanced and the triangle mode of Observe formulae. For example, sA2 stands for <br> for sin(A/2). <br> The extended option, when necessary, adds to compact formulae a readable <br> version of them. <br> The xyz option writes the formulae in terms of the variables $t, x, y, z, u, v, w$. This way <br> the expressions are easier to read and can be more easily recognised by computer <br> algebra systems. |
| :--- | :--- |
| Transform |  |
| variables | If checkmarked, OK Geometry will look for polynomial relations that involve <br> selected variables and also transformed variables (e.g. the square of variables). In <br> this case the calculation takes more time. |
| Stop at first | In many cases Observe formulae searches for several results. For example, if <br> 'Transform variables' is checkmarked, results are searched for each type of <br> transformation of variables. The triangle variant of Observing formulae considers <br> even more types of results, and all this can be time-consuming. <br> In order to reduce the calculation time, checkmark the 'Stop at first' option. In this <br> case the computation will stop as soon as the first relation is found. |
| Strength | A higher strength means a higher probability of finding a relation (at the cost of <br> longer computation time). You can set the strength from 1 to 4, the default value is <br> 2. <br> The usual strategy is to work with strength 2. If the observation does not find a <br> relationship then try again with a higher strength. |

### 4.2.3 Managing the results of Observe formulae

The results of the command Observe formulae are written in an ordinary text editor. In addition to the common text editor commands, available by a right-clicking on the results area, there are some specific commands (see Figure 30, right). All specific commands refer to the text in block. So, to use the specific commands, you must first put in block the text on which to apply the command.

Here is a brief description of the commands:
Add to Notes. The text in the block will be added to the Notes section of the project report.
Add to Comment. The text in the block will be added to the Comment section of the current task.

Add as parameter in construction. A single relation or part of a single relation in compact notation the block will be converted into a parameter in a construction. If the block contains the = symbol, the generated parameter is a condition Fcondx, otherwise it is an ordinary numeric parameter called Fexprx. This operation can be used as a check of the relation under a manual dragging of the dynamic construction.

Copy as triangle expression. This operation is useful only in triangle variant. A single relation or part of a single relation in compact notation is copied to the clipboard in a more readable form, which is also understood by the Number/Triangle expression command in the Sketch Editor. This operation can be used to check the relation under a manual dragging of the dynamic construction.

You may find useful also the ordinary Copy command for transferring single relations or part of relations to computer algebra systems (CAS). The xyz notation is probably the best option for this operation.

### 4.2.4 More examples

## Example 1

Given is a triangle $A B C$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points of contact of the incircle of $A B C$ with the sides $B C$, $C A, A B$ of the triangle $A B C$ (Figure 31). Let $r a, r b, r c, r r$ be the radii of respective incircles of the triangles $A C^{\prime} B^{\prime}, B A^{\prime} C^{\prime}, C B^{\prime} A^{\prime}, A^{\prime} B^{\prime} C^{\prime} .{ }^{24}$


Figure 31
The Observe formulae command detects the relationship

$$
4 \cdot r a \cdot r b \cdot r c=(r a+r b+r c+r r) \cdot r r^{2}
$$

Can you prove this relation?

[^18]
## Example 2

Given a triangle ABC , let $r A, r B, r C$ be the radii of the mutually externally tangent circles with centres $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Furthermore, let $r I$ and $r O$ be the radii of the circles externally and internally tangent to the three mentioned circles (i.e. the inner and outer Soddy circles). (Figure 32) ${ }^{25}$


Figure 32
Observe formulae suggests nice relationships between variables

- $\quad r A, r B, r C, r I$
- $\quad r A, r B, r C, r O$
- $\quad r A, r B, r C, r I, r O$

Note. Checkmark the Transform variables option.

## Example 3

Let H be the orthocentre of the acute triangle ABC . Let $r a, r b, r c$ be the radii of incircles of the triangles HBC, HCA, and HAB respectivery. Furthermore, let $r i$ and $r$ be the radii of the incircle and the circumcircle of the triangle $A B C$. (See Figure 33.) ${ }^{26}$

[^19]

Figure 33
Observe formulae suggest this relationship between the 5 radii:

$$
\begin{gathered}
4 *\left(r a^{2}+r b^{2}+r c^{2}+r^{2}\right)= \\
=(r a+r b+r c+r i-2 r)^{2}+8 \cdot r \cdot r i
\end{gathered}
$$

Does the relation also hold for obtuse triangles?

### 4.3 Observe formulae - advanced

The advanced variant of Observe formulae is similar to the simple one, except that you can also directly specify the involved geometric quantities of the dynamic construction. Thus, the geometric quantities to be considered in a relation do not have to be measured beforehand in the Sketch Editor.

The advanced variant of Observe formulae commands can be accessed via the main menu Commands/Observe formulae/Advanced (Figure 28). You can switch between the variants (modes) while using the command. In this section we will show how to use of the advanced variant of the command.

The first entry of the form that appears (Figure 35) is lightly coloured to emphasise its special role:

- In the first entry ( t ) you can write a geometric quantity or a ratio of two quantities (of the same dimension). Note that the remaining entries can only contain geometric quantities (or are empty).
- If the first entry is not empty, OK Geometry searches only for formulae that contain this entry.

We explain the advanced variant of the command with a simple example:
In a convex quadrilateral $A B C D$ let $E, F$, and $G$ be the midpoints of sides $B C, C D$, and $D A$. Furthermore, let $P$ and $Q$ be the intersection of line GE with the lines AF and BG (Figure 34, left).

How are related the lengths of segments AP, PF, BQ, and BF? (See Figure 34, left.) ${ }^{27}$
What is the relationship between the areas of triangles labelled as $t, x, y, z$ ? (See Figure 34, right.) ${ }^{28}$


Figure 34
Proceed as follows:

1. Provide a dynamic construction of the object(s) under consideration. The construction can be imported from dynamic geometry software or created in the OK Geometry Sketch Editor.
2. Apply the command Command/Observe formulae/Advanced. A form appears. In the entries $t, x, \ldots$ write the quantities to be considered. In our case we write $d(A P)$ for the length of the segment AP and similarly for the other three segments. Then click on the Observe button (Figure 35, left).
3. The polynomial relation obtained usually requires additional algebraic manipulation, depending on your aesthetic standards and mathematical goals. The found relation can be rewritten as

$$
\frac{|A P|}{|P F|}+\frac{|B Q|}{|Q F|}=2
$$

Remember that we are dealing with a result of an observation. It is a nice exercise in geometry to actually prove the correctness of the formula.
4. To add a further dynamic numerical test for the obtained relation proceed as follows:
a. Insert the considered relation into a block. The expression must be in compact notation.
b. Right click on the relation and select the command Add as parameter in the construction.
c. A parameter Fcondx is added to the dynamic construction. The parameter numerically checks the correctness of the equation in the block. You can dynamically

[^20]modify the construction and observe if Fcondx has the value 'True'. In our case, we can dynamically check if convexity of the quadrilateral $A B C D$ is a necessary condition for the relation to be true. Note that you can as well declare as a parameter only a part of the relation by putting only that part of the relation in a block.
5. The problem with areas is handled in a similar way. In order to consider the area of triangle PGD we fill the entry $t$ as Area(PGD). Note that the result of the observation is written differently because we have chosen the notation option ' $y x z$ '.
\[

$$
\begin{gathered}
\text { Variables: } \mathrm{t}=\text { Area(PGD) }, \mathrm{x}=\text { Area(CEQ) }, \mathrm{y}=\text { Area(PFD) , } \mathrm{z}=\text { Area(CFQ) } \\
1^{*} \mathrm{t}^{*} \mathrm{z}+\mathrm{x}^{*} \mathrm{y}-\mathrm{y}^{*} \mathrm{z}=0
\end{gathered}
$$
\]



Figure 35

### 4.3.1 Comments on observed formulae

Many problems can be solved with the above scheme, i.e. by considering the distance between the points $P$ and $Q$ as $d(P Q)$ and the area of the triangle PQR as Area(PQR). However, the advanced variant can handle more complex situations. Here are the conventions to be followed in describing the geometric quantities in the entries $\mathrm{t}, \mathrm{x}, \mathrm{y}, \ldots$ :

- The entries can also be quantities measured in the Sketch Editor (as parameters) with the measuring commands (Distance to object, Length, Perimeter, Area).
- The entries can also be parameters obtained by computation in the Sketch Editor. In this case if the parameter is 1-dimensional, its name should start with a lowercase letter, and if the parameter is 2-dimensional quantity, its name should start with an uppercase letter.
- The first entry ( $t$ ) may contain a geometric quantity, e.g. $d(A B)$, or a ratio of two quantities of the same dimension, e.g. $d(A B): d(C D)$ or Area(ABP):Area(CAP).
- In addition to $d(P Q)$ and $A r e a(P Q R)$ you can use a whole range of geometric quantities that are specified within the entry. The list of all allowed geometric quantities is in Section 4.3.2.
- It is possible to fill an entry with more than one quantity, separated by a space. In this case, each of the space-separated quantity is considered separately.
- The options of the command are the same as described in Section 4.2.2. The treatment of the results is the same as described in Section 4.2.3.


### 4.3.2 Symbolising geometric quantities

Two symbols are used for distance:

| $d(A B)$ | distance between the points $A$ and $B$ |
| :--- | :--- |
| $o(A B C)$ | oriented distance from the point $A$ to the oriented line $B C$ |

The quantities listed below refer to triangles. If the triangle argument is missing, the quantity refers to the reference triangle. For example:
Area(PQR) $\qquad$ denotes the area of the triangle $P Q R$,
Area $\qquad$ denotes the area of the reference triangle (if it exists),
$a(P Q R)$ $\qquad$ denoted the length of the side $Q R$ in triangle $P Q R$,
a. $\qquad$ denotes the length of the side $a$ of the reference triangle (if it exists).

| $a(A B C)$ | length of the side $B C$ <br> length of the side $C A$ <br> l(ABC) |
| :--- | :--- |
| $s(A B C)$ | half-perimeter of the triangle $A B C$ |
| $r(A B C)$ | radius of the circumcircle of the triangle $A B C$ |
| ri(ABC) | radius of the incircle of the triangle $A B C$ |
| Area(ABC) | Area of the triangle $A B C$ |
| $S(A B C)$ | 2•Area(ABC) |
| SA(ABC) <br> $S B(A B C)$ <br> $S C(A B C)$ <br> $S W(A B C)$ | Conway parameters for triangle $A B C$ |

The following quantities also refer to triangles. Each quantity in the list consists of three cases related to the three angles of the triangle argument. We list only the cases related to the first angle of the triangle. If the triangle argument is missing the quantity refers to the reference triangle (if it exists).

For example:

```
cA(PQR) = r\cdotcos(P),
cB(PQR) =r\cdotcos(Q),
cC(PQR) =r\cdot\operatorname{cos}(R), where r is the circumradius of PQR.
```

| cA(ABC) | $r \cdot \cos (\mathrm{~A})$ | r .... circuradius of the triangle ABC $A, B, C \ldots$. angles of the triangle $A B C$ W .... Brocard angle of the triangle $A B C$ |
| :---: | :---: | :---: |
| $t \mathrm{~A}(\mathrm{ABC})$ | $r \cdot \tan (\mathrm{~A})$ |  |
| cA2(ABC) | $\mathrm{r} \cdot \cos (\mathrm{A} / 2)$ |  |
| sA2(ABC) | $r \cdot \sin (A / 2)$ |  |
| tA2(ABC) | $r \cdot \tan (\mathrm{~A} / 2)$ |  |
| cA3(ABC) | $r \cdot \cos (\mathrm{~A} / 3)$ |  |
| sA3(ABC) | $r \cdot \sin (A / 3)$ |  |
| tA3(ABC) | $r \cdot \tan (\mathrm{~A} / 3)$ |  |
| $\mathrm{cW}(\mathrm{ABC})$ | $r \cdot \cos (\mathrm{~W})$ |  |
| $s W(A B C)$ | $r \cdot \sin (W)$ |  |
| tW(ABC) | $r \cdot \tan (\mathrm{~W})$ |  |

### 4.3.3 More examples

## Example 1

Let $G$ be the centroid of the triangle $A B C$. Let $A^{\prime}$ be the intersection, other than $A$, of the line $A G$ with the circumcircle of $A B C$. Define $B^{\prime}$ and $C^{\prime}$ cyclically (Figure 36$)^{29}$.

Consider the following areas:

$$
\begin{aligned}
& t=\operatorname{Area}(\mathrm{ABC}) \\
& x=\operatorname{Area}\left(\mathrm{A}^{\prime} \mathrm{BC}\right) \\
& y=\operatorname{Area}\left(\mathrm{AB}^{\prime} \mathrm{C}\right) \\
& z=\operatorname{Area}\left(\mathrm{ABC}^{\prime}\right)
\end{aligned}
$$



Figure 36

[^21]The advanced variant of Observe formulae command suggests that the following (reordinated) relation holds:

$$
\left(\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)+3 \cdot \frac{x}{t} \cdot \frac{y}{t} \cdot \frac{z}{t} \cdot\left(\frac{t}{x}+\frac{t}{y}+\frac{t}{z}+9\right)=1
$$

## Example 2

To shed more light on the configuration in Figure 36, we consider the ratio $\left|A A^{\prime \prime}\right|:\left|A^{\prime \prime} A^{\prime}\right|$ in the configuration on Figure 37 (left). We try to express this ratio in terms of the sides of the triangle $A B C$. Note that if ABC is declared as a reference triangle we can use the symbols $a, b, c$ for the length of the sides of the triangle $A B C$ (Figure 37, right) ${ }^{30}$.


Figure 37

### 4.4 Observing formulae - triangle

The triangle variant of Observe formulae is a heuristic tool that suggests how to express a geometric quantity or a ratio of two geometric quantities in terms of some 'commonly used triangle quantities' such as length of its sides. This variant is quite easy to use, unfortunately it is sometimes time consuming. We explain the use of the triangle variant with a trivial example.

## Example

Given a triangle $A B C$, let $A^{\prime}$ be the centre of its $A$-excircle, i.e. $A^{\prime}$ is the centre of the circle that lays outside the triangle $A B C$ and touches the extension of the side $A B$, the extension of the side $A C$, and

[^22]the side $B C$. Furthermore, let $A^{\prime \prime}$ be the point of contact of the $A$-excircle with the side $A B$ (Figure 38). ${ }^{31}$

We want to express somehow the radius of the A-excircle, i.e. $\left|A^{\prime} A^{\prime \prime}\right|$, as well as the ratio $\left|B A^{\prime \prime}\right|:\left|A^{\prime \prime} C\right|$.


Figure 38
We proceed as follows:

1. Provide a dynamic construction of the object(s) under consideration. The construction can be imported from dynamic geometry system or created in the OK Geometry Sketch Editor.

## Declare the triangle $A B C$ as the reference triangle.

2. Activate the command Command/Observe formulae/Triangle. A form will appear. In the first entry write the considered (Figure 39, left) quantity or the ratio of two quantities (Figure 39, centre): in our case, $d\left(A^{\prime} A^{\prime \prime}\right)$ for the first observation, and $d\left(B A^{\prime \prime}\right): d\left(A^{\prime \prime} C\right)$ for the second observation. Then click on the Observe button.


## Figure 39

3. OK Geometry looks for various ways of expressing the considered quantity or ratio in terms common triangle elements. Some of the suggestions require an interpretation as explained

[^23]in Section 4.3.2. The highlighted part of the results in Figure 39 (left) and Figure 39 (right), for example, can be rewritten as
\[

$$
\begin{gathered}
\frac{d\left(A^{\prime} A^{\prime \prime}\right)}{2}-r \cdot \cos \left(\frac{A}{2}\right)^{2}+r \cdot \cos \left(\frac{B}{2}\right)^{2}+r \cdot \cos \left(\frac{C}{2}\right)^{2}=0 \\
d\left(A^{\prime} A^{\prime \prime}\right) \cdot r i=(a-b+c)(a+b-c) \\
\frac{d\left(B A^{\prime \prime}\right)}{d\left(A^{\prime \prime} C\right)}=\frac{\tan \frac{B}{2}}{\tan \frac{C}{2}} \\
\frac{d\left(B A^{\prime \prime}\right)}{d\left(A^{\prime \prime} C\right)}=\frac{a+b-c}{a-b+c} \\
\frac{d\left(B A^{\prime \prime}\right)}{d\left(A^{\prime \prime} C\right)}=\frac{\cos A-\cos B+\cos C+1}{\cos A+\cos B-\cos C+1}
\end{gathered}
$$
\]

In the above expressions, according to Section 4.3.2, $r$ is the radius of the circumcircle of $\mathrm{ABC}, r i$ is the radius of the inscribed circle, $a, b, c$ are the side lengths, and $A, B, C$ are the angles of the triangle $A B C$.
We emphasize again that the Observe formulae command does not provide a proof of the detected relations. In the above case one can easily provide geometric proofs for the proposed relations.
In general, the list of results can contain several items or can be empty.
4. To add a further dynamic numerical test for the obtained relation proceed as follows:
a. Insert the considered relation into a block. The expression must be in compact notation.
b. Right click on the relation and select the command Add block as parameter in the construction.
c. A parameter Fcondx is added to the dynamic construction. The parameter numerically checks the correctness of the equation in the block. You can modify the construction dynamically and observe if Fcondx has the value 'True'. Note that you can declare only a part of the relation as parameter by putting in block only this part of the relation.

### 4.4.1 Comments on observed formulae

- Observed algebraic relations are a result of numerical observations of the dynamic construction. The found relations are not proved and there is no guarantee they are correct. A relation can also be missed. In general, a missed relation occurs more likely than a found relation that does not hold at least locally.
- The considered entry can be also a measured or calculated parameter of the dynamic construction.
- The entry can be a parameter that was computed in the Sketch Editor (e.g., a product of two distances). If the parameter is 1-dimensional, its name should begin with a lowercase letter. If the parameter is 2-dimensional quantity, its name should begin with an uppercase letter.
- The considered entry can contain a geometric quantity, e.g. $d(A B)$, or a ratio of two quantities of the same dimension, e.g. $d(A B): d(C D)$ or Area(ABP):Area(CAP).
- Besides $d(P Q)$ and Area(PQR) you can use a whole range of geometric quantities. The list of all admissible geometric quantities is in Section 4.4.2.
- The options of the command are the same as described in Section 4.2.2. The treatment of the results is the same as described in Section 4.2.3.
The triangle variant of Observing formulae is time consuming. Increasing the strength and allowing transformation of variables significantly increases the computational time. You may consider in such cases to checkmark the Stop at first option.


### 4.4.2 Geometric quantities of the reference triangle

Two symbols are used for distance:

| $d(A B)$ | distance between the points $A$ and $B$ |
| :--- | :--- |
| $o(A B C)$ | oriented distance from the point $A$ to the oriented line $B C$ |

The results of the triangle variant of Observe formulae expressed in terms of certain parameters of the reference triangle. Below is the list of the used parameters. Note that the list is essentially the same as the list in Section 4.3.2. The list is self-explanatory. For example, if PQR if the reference triangle, then cA means $r \cdot \cos (P)$, where $r$ is the circumradius of the triangle PQR.

| $a, b, c$ | length of the sides of the reference triangle |  |
| :---: | :---: | :---: |
| S | half-perimeter of the reference triangle |  |
| r | radius of the circumcircle of the reference triangle |  |
| ri | radius of the incircle of the reference triangle |  |
| Area | area of the reference triangle |  |
| S | twice the area of the reference triangle |  |
| SA, SB, SC, SW | Conway parameters for the reference triangle |  |
| $x t(P), y t(P), z t(P)$ | trilinears of point $P$ |  |
| $\mathrm{Xb}(\mathrm{P}), \mathrm{Yb}(\mathrm{P}), \mathrm{Zb}(\mathrm{P})$ | barycentrics of point $P$ |  |
| $a, b, c$ | $2 r \cdot \sin (A), 2 r \cdot \sin (B), 2 r \cdot \sin (C)$ | r .... circuradius of the reference triangle $A, B, C \ldots$ angles of the reference triangle W .... Brocard angle of the reference triangle |
| cA, cB, cC | $r \cdot \cos (A), r \cdot \cos (B), r \cdot \cos (C)$ |  |
| tA, tB, tC | $r \cdot \tan (A), r \cdot \tan (B), r \cdot \tan (C)$ |  |
| cA2, cB2, cC2 | $r \cdot \cos (\mathrm{~A} / 2), \mathrm{r} \cdot \cos (\mathrm{B} / 2), \mathrm{r} \cdot \cos (\mathrm{C} / 2)$ |  |
| sA2, sB2, sC2 | $r \cdot \sin (A / 2), r \cdot \sin (B / 2), r \cdot \sin (C / 2)$ |  |
| tA2, tB2, tC2 | $r \cdot \tan (\mathrm{~A} / 2), r \cdot \tan (\mathrm{~B} / 2), r \cdot \tan (\mathrm{C} / 2)$ |  |
| cA3, cB3, cC3 | $r \cdot \cos (\mathrm{~A} / 3), \mathrm{r} \cdot \cos (\mathrm{B} / 3), r \cdot \cos (\mathrm{C} / 3)$ |  |
| sA3, sB3, sC3 | $r \cdot \sin (A / 3), r \cdot \sin (B / 3), r \cdot \sin (C / 3)$ |  |
| tA3, tB3. tC3 | $r \cdot \tan (\mathrm{~A} / 3), \mathrm{r} \cdot \tan (\mathrm{B} / 3), \mathrm{r} \cdot \tan (\mathrm{C} / 3)$ |  |
| cW, sW, tW | $r \cdot \cos (W), r \cdot \sin (W), r \cdot \tan (W)$ |  |

### 4.4.3 More examples

## Example 1

Given is a triangle $A B C$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points of contact of the incircle of $A B C$ with the sides of $A B C$ (Figure 40). The lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur in a point $P$ (the Gergonne point). ${ }^{32}$


Figure 40
The triangle variant of Observe formulae suggest several expressions for $|A P|:\left|P A^{\prime}\right|$ as well as $|A P|$ or $\left|A A^{\prime}\right|$. (The more the strength the more relations are detected.) Here are just some of them:
$\frac{|A P|}{\left|P A^{\prime}\right|}=\frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{\tan \frac{A}{2}}=\frac{2 a(-a+b+c)}{(a-b+c)(a+b-c)}$.

[^24]
## Example 2

Given is an acute triangle $A B C$. Consider the circles $k A, k B, k C$ that have as diameters the sides $B C$, $C A, A B$ of the triangle $A B C$. What is the radius $r r$ of the circle $k$ that contains these circles and is tangent to all of them (Figure 41, left). ${ }^{33}$


## Figure 41

Observe formulae for triangles at strength 4 suggests that

$$
r r=\frac{S \cdot(2 r+r i)+2 \cdot r i \cdot(S W+r i \cdot(4 r+r i))}{2 \cdot(S+r i \cdot(4 r+r i))}
$$

## Example 3

Continuing the previous construction, let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points of contact of the circles $k A, k B, k C$ and the circle $k$. Furthermore, let $b b$ and $c c$ be the distance from $A^{\prime}$ to the orthogonal projections of $A^{\prime}$ onto $A C$ and onto $A B$ (Figure 41, right). ${ }^{34}$

Observe formulae suggests that

$$
\frac{b b}{c c}=\frac{1+\sin C}{1+\sin B}
$$

Under this assumption we deduce that $A A^{\prime}, B B^{\prime}$,and $C^{\prime}$ ' meet at a common point with trilinear coordinates

$$
\frac{1}{1+\sin A}: \frac{1}{1+\sin B}: \frac{1}{1+\sin C}
$$

The point of concurence of $A A^{\prime}, B^{\prime}, C^{\prime}$ is the Paasche point (X1123) of triangle $A B C$.

[^25]
## 5 Generic constructions

### 5.1 Introduction

Consider the following construction (Figure 42): let $P$ be the orthocentre of a given triangle $A B C$. Consider the following three circles: the circle passing through $B, C, P$, the circle passing through $C, A, P$, and the third circle through $A, B, P$. Label the centres of these circles as $A^{\prime}, B^{\prime}$, and $C^{\prime}$ respectively ${ }^{35}$. This well known configuration is blessed with several nice properties that can be easily observed with OK Geometry. For example, the lines $A A^{\prime}, ~ B B^{\prime}, ~ C C^{\prime}$ concur in a point, a fact that we check with the condition named Concu_xxx (concurrence of three lines). Moreover, the three circles are mutually congruent and the triangle $A^{\prime} B^{\prime} C^{\prime}$ is homothetic and congruent to the triangle $A B C$.


Figure 42
It comes natural to examine constructions similar to the one presented. The point $P$ could take the place of the centroid of $A B C$ or circumcentre of $A B C$ or some other centre of the triangle $A B C$. Also, instead of circumcircles of triangles BCP, CAP, ABP, the three circles could be incircles, 9-point circles or some other circles related to the aforementioned triangles. Perhaps such modified constructions have some nice properties, but it would be an annoyance to construct all of them one by one. The generic constructions were designed to make life easier in such cases.

Note that the initial configuration was obtained as a sequence of operations, starting from the three vertices $A, B, C$, the lines connecting each pair of them, and so on. Two operations are particularly important:

1. Instead of the (complex) operation 'set a point as the orthocentre of a given triangle' we want something like 'set the point $P$ as each of the following points of a given triangle $A B C$ :

[^26]incentre (ETC centre X1), centroid (ETC centre X2), circumcentre (ETC centre X3), orthocentre (ETC centre X4), 9-point centre (ETC centre X5)'. What we want is a generic operation or rule. You can think of a rule as a 'union' of functionally isomorphic operations, that is, a union of operations that construct the same type of object with points as arguments. Only one operation of a rule is active at a time, and it is easy to switch between the operations of a rule. In our construction (and this is easy to do in OK Geometry) we would replace the operation ' $P$ is orthocentre of $A B C$ ' with a rule, say Pobject1, to obtain ' $P$ results from the rule Pobject1 on the points $A, B, C^{\prime}$.
2. Instead of the (complex) operation 'construct a circle as the circumcircle of a given triangle' we want something like 'set a circle as each of the following circles of a given triangle: circumcircle, incircle, 9-point circle'. We need a rule, say Cobject1, that contains three operations, each yielding some circle from three given points. We would apply the rule first to points $B, C, P$, then to points $C, A, P$, and finally to points $A, B, P$. The rule Cobject1 would perform the same operation (circumcircle, incircle, or 9-point circle) in all three cases.

As we will see, it is easy either to construct and use new rules or replace an operation in a construction with a rule - in both cases we get a generic construction. A generic construction consists of an initial construction called the base example and one or more rules or generic operations attached to some operations in the base example. When a rule is applied, all operations in the base example to which the rule is attached, are modified according to the rule. The constructions obtained by applying rules are called examples. Examples are de facto ordinary constructions. In our initial construction, we have attached to the operation orthocentre (of ABC) the rule Pobject1, which consists of 5 variants (operations). Also, we have attached to the operations circumcircle (of $B C P, C A P, A B P$ ) the rule Cobject1, which consists of 3 variants. If we activate both rules, we obtain $3 \times 5=15$ examples of our generic construction. The examples are shown in Figure 43. Note that the example Ex_10 is missing because it is degenerated. In fact, all three circles coincide.



Figure 43
Generic constructions are easily obtained, either by modification of an ordinary construction or by direct construction. A generic construction can contain dozens, hundreds or even thousands of examples.

Generic constructions allow you to:
$\checkmark$ simultaneously generate a large number of examples (constructions);
$\checkmark$ easily access to any example of a generic construction, examples can be observed, exported, etc., just like ordinary constructions;
$\checkmark$ automatically search examples of a generic construction in order to find examples with specified properties;
$\checkmark$ automatically create projects from examples of a generic construction;
$\checkmark$ automatically perform triangle analysis on all or some examples of a generic construction,
$\checkmark$ automatically observe formulae on all or some examples of a generic construction.
In simple terms, a generic construction is an ordinary construction, in which one or more rules (generic operations, 'unions of operations') are attached to selected operations (construction steps). A generic construction contains several constructions, called examples, obtained by applying various operations in rules. When no rule is active, the generic construction appears visually as the base example and behaves like an ordinary construction. The concept of rule (generic operation) is explained in detail in Section 5.3. In the next section we give an overview of the commands related to generic constructions and the way they are used.

### 5.2 Working with generic constructions (an overview)

All commands related to generic constructions are shown in Figure 44 and Figure 45.
Generic constructions as files are stored like ordinary constructions (files with extension .p) or projects (files with extension .pro). The generic construction of the introductory example is in the file Generic_02. $p^{36}$. When you open a generic construction, you see the base construction appearing like an ordinary construction. The only indication that it is a generic construction is the button Gen which turns reddish (otherwise it is gray and inactive), Figure 44.

Generic constructions can be accessed at any time (except when icons of a project are displayed).

[^27]

Figure 44


Figure 45
All commands for creating generic constructions are located in the group Generic of the Sketch Editor. There are three groups of commands: 1. generic operations for creating new objects (Point, Line,...), 2. generic operations for non-standard objects and triangle objects, 3. commands for handling generic constructions.

### 5.2.1 Attaching rules to operations

We first show how to attach a rule (generic operation) to an operation of an ordinary construction (or the base example of a generic construction). We start from an ordinary construction ${ }^{37}$ described in the introduction (Figure 42). You can create the initial construction in OK Geometry, import it from a system of dynamic geometry, or use the supplied file Generic_01.p.

First, we attach to the point $P$, which is now the orthocentre of $A B C$, a rule consisting of triangle centres X1 to X5. Here are the steps:

1. Enter in the Sketch Editor mode.
2. Click the command Generic/Attach to object. Note the information line just above the displayed construction - OK Geometry expects a point, line or circle.
3. Click on the point P. A point rule form appears (Figure 46). Since we are creating a new rule we choose the name Pobject1 (new) and immediately declare the operations in the rule, i.e., ETC triangle centres 1-5. Note the " $3:$ " in front of the operation names for ETC centres -3 means that the operation takes 3 points as arguments. We also checkmark the points $A, B, C$

[^28]used by the operations. The order in which the points are marked generally matters, but not in our case. Note that $A^{\prime}, B^{\prime}, C^{\prime}$ are not listed among the points, because in the construction they depend on the point $P$. Then click the OK button. (Do not bother of other functions in the form.)


Figure 46
Now consider the circle through B, C, P, that is, the circumcircle of the triangle BCP. As described above, use the command Generic/Attach to object, then click on the circle through B,C,P. In the form that appears select the rule Cobject1 (new) and then select the operations: 9-point circle, circumcircle, and incircle of a triangle. Be sure to checkmark the points B,C,P (the order of checking is not important in this case). Then click OK.

The circles through $C, A, P$ and through $A, B, P$ must obey the same rule as the circle through $B, C, P$, that is, all three circles must be incircles of the respective triangles, or circumcircles, or 9-point circles. When we attach a rule to the circle through C,A,P we do not declare a new rule, but choose the previously declared rule Cobject1 (Figure 47). We proceed similarly for the circle through A,B,P.


Figure 47
Our generic construction is ready. You can save it to a file as you save ordinary constructions. This generic construction is also available in the file Generic_02.p .

### 5.2.2 Accessing examples of generic constructions

The Gen button indicates whether the current construction is generic. A generic construction of the introductory example is available for download as file Generic_02. ${ }^{38}$.

There are three ways to activate the examples in a generic construction (see Figure 44 and Figure 45):

- Press the Gen button on the toolbar to the right. This is the usual way, it is always accessible.

[^29]- Use the command Commands/Manage generic constructions.
- In Sketch Editor click the command Generic/Manage generic constructions.

A form for managing examples appears (Figure 48). For convenience we refer to this form as Examples- form.

Important notice. A generic construction cannot be modified when the Examples-form is active. When you exit the Examples-form the generic construction is as it was when you accessed the form.


Figure 48
To access the examples, do the following:

1. Checkmark the rules you want to activate. In our case we have marked both rules, i.e. Pobject1 and Cobject1. We can see that the rules give rise to 15 examples.
Note. The order in which the rules are marked determines the sequence order of examples. In our case we have marked Pobject1 first and then Cobject1.
Note. If a rule is not activated, the corresponding operation from the base construction is used.
2. Leave the middle part of the form (Conditions, etc.) blank. These entries are filled only for scanning through the examples in search of examples with particular properties..
3. Select Example as the Scan mode.

You can choose whether or not to display auxiliary objects that are automatically created in examples. In our case, a displayed centre of a triangle colours the corresponding triangle green. Check or uncheck according to your preference.
We shall explain the SkipBad option later.
4. Press the Start Scan and then repeatedly the Continue button. An example is displayed at each step.
5. You can also position the slider at a number and then press the Set button to display the corresponding example.
6. The example you see at each step is an ordinary construction. You can do with the example what you can do with any construction: zoom it, drag points, delete objects or add new objects, observe the properties, save the construction as an ordinary construction etc. However, unless you save the example to a separate file or icon, all changes to the example will be lost when you switch to another example or close the Examples-form.
7. The examples in generic construction can be organised into a project by pressing the AddToProject button. The examples are stored as icons (ordinary constructions) with names with suffix _x, while the generic construction is stored under the name with suffix _all.

### 5.2.3 Creating a selection of examples

In our introductory example we have (observationally) checked whether the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur in a point. This was done using the command Advanced/Check property/ConcurrentL in the Sketch Editor. The resulting parameter Concu_xxx turned to be (True). We wonder in which of the 15 examples of the generic construction (file Generic_02.p) the condition Concu_xxx holds as well. Here is how to proceed.


Figure 49

1. In the Examples-form checkmark the rules you want to consider (Figure 49, see previous section).
2. Set the selection criteria for examples. Under the Conditions you see the conditions (checks) that were made in the base example of the generic construction. Checkmark the conditions you consider as criteria for the selection of examples. At this point you could consider also properties as criteria, but for now this is not the case. When scanning, the system looks for examples in which at least one of the selected criteria is fulfilled.
3. For the Scan mode choose Criteria or Auto.

You can choose whether or not to show auxiliary objects that are automatically created in the examples.
If SkipBad is marked, scanning will not consider examples that contain fewer objects than the base example. We recommend to always checkmark SkipBad entry when scanning, as a smaller number of objects means that some objects could not be constructed or that some points coincide.
4. Click on the Start Scan button. If you selected the Auto mode of scanning, wait until the scan is finished and the result is displayed in the results area. In our case 5, examples were found. If you selected Criteria as scanning mode, the examples that meet at least one of the marked conditions will be displayed one by one as you click on the Continue button.
5. To review the examples in the obtained selection, click on the Start Review button and then repeatedly press the Continue button.
6. The example you see at each step is an ordinary construction. You can do with the example what you can do with any construction: zoom it, drag points, delete objects or add new objects, observe the properties, save it as an ordinary construction, set it as an icon, etc. However, unless you save the example to a separate file or icon, all changes you make to the example will be lost as you switch to another example or close the Examples-form.
7. The examples in the obtained selection can be organised into a project by pressing the AddToProject button. The examples are stored as icons (ordinary constructions) with names with suffix _x, while the generic construction is stored under the name with suffix _all.
The Sketch Editor command Advanced/Check property provides a variety of geometric properties. The obtained condition can be composed with the command Number/Compose conditions. You can thus check the logical conjunction, disjunction, negation of conditions (use the operators and, or, not). Furthermore, the Advanced/Check property/Other command provides additional properties that you may find useful (e.g. the True property, which is always true).

### 5.2.4 Fast scan of conditions criteria



Figure 50
Scanning examples can take a lot of time. If the generic construction contains hundreds or thousands of examples, it is better to choose Fast as Scan mode. The method considers only conditions as criteria (properties are ignored).

You proceed as described in the previous section. However, after you press the Start Scan button (and wait a bit) you can read in the Results section which examples satisfy at least one of the specified conditions. You can review these examples by pressing the Start Review button and then repeatedly the Continue button.

### 5.2.5 Observing properties in examples



Figure 51
It is possible to scan all the examples of a generic construction to find which of them a certain property has been observed. The procedure is, basically, the same as for observing whether certain conditions are met, except that instead of the conditions you specify the properties to be observed.

To specify the properties to observe, click on the Manage properties button. In the list of properties, select the properties you want to observe. In our case we selected 2 properties: if any 6-tuple of points in an example lay on a conic, if any two or more pairs of squares of the distances between points in the example add up to same sum. As you can see, the properties are divided into groups. When you select a property coloured red you select all the properties in the group below it.

Once the properties are selected, click on the Properties done button (otherwise you cannot proceed).
For the scanning method you can select either Criteria (i.e. stop when a criterion is observed) or Auto (i.e., scan to the end). Whenever an example is found or reviewed, you can see the properties found in the Observed properties section. Figure 52 shows the display as OK Geometry observed in Example 11 both observed properties.


Figure 52
The observation of properties in examples is a powerful tool, provided one takes into account some important facts.

1. There is a big difference between observing properties and observing conditions. A condition always refers to a specific property of specific objects whereas properties consider all objects. To illustrate the difference, consider the case of concurrence of lines in our generic construction. All examples contain 7 labelled points each that determine, in general, 21 lines, which give rise to 1330 triplets of lines. Selecting the 'concurrent lines' property means that you observe the concurrency of all triplets in all examples of the generic property. In contrast, selecting the condition that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent requires only one observation per example. So observing properties is slower that observing conditions and much slower than fast observing of conditions.
2. The speed of observation of properties in examples depends on: the number of properties observed, the type of properties observed, and the number of (labelled) points involved. Observing a lot of properties at the same time is unwise, since each example will almost certainly have one or another property. Therefore, it is reasonable to limit yourself to essential properties. The best speed improvement is obtained by restricting the observation to the essential (labelled) points. This is done by specifying the points to consider in the section Treatment|Consider only points in the observation pane.
3. The properties in the list of observations are to some extent self-explanatory. Nevertheless, there are some peculiarities that are not self-evident:
a. The properties based on geometric quantities or numerical values (e.g., parameters, congruent segments, congruent angles, area of triangle, congruent circumcircles, congruent incircle) take into account not only equality of the quantities but also many relationships between triplets of quantities (e.g. radius of a circle is equal to the sum of radii of two other circles)
b. Properties based on the ratio of two geometric properties (e.g., ratio of parameters, ratio of distances, ratio of angle sizes, ratio of areas of triangles, ratio of radii of circumcircles, ratio of radii of incircles) consider not only the equality of two ratios, but also whether a ratio is observed to be constant, as well as some relationships between triplets of ratios.
c. The property 'points' observes whether a point is a 'simple' centre of any triplet of labelled points in the configuration.
4. If it turns out that too many properties of examples are found and listed during the scan, we can also reduce their number (besides reducing the set of observed labelled points) also by applying a filter to the listed instances of properties. This is the purpose of the Filter button.

To summarise this section, let us again consider the generic construction in file Generic_02.p. Let us examine the position of the point $P$ with respect to the triangle $A^{\prime} B^{\prime} C^{\prime}$. We describe three ways of how to proceed.

1. The simplest way is to display all 15 examples one by one (as described in Section 5.2.2). For each example we analyse the position of the point $P$ in the reference triangle $A^{\prime} B^{\prime} C^{\prime}$ (the command Special|Analyse object in reference triangle). We can do this way because the number of examples is not excessive.
2. We can do an automatic scan of all the examples. Since the property 'points' refers to simple centres in triangles with labelled points as vertices, we observe the property points with the scanning option Auto or Criteria. Furthermore, in the Treatment section of the observation pane we choose to observe only points $A^{\prime} B^{\prime} C^{\prime} P$.
3. A more sophisticated method of triangle analysis in examples is explained in Section 5.5.

### 5.3 Rules (generic operations)

In Section 5.1 we introduced the concept of rule (generic operation) as something analogous to a geometric operation in a construction, as a 'union' of operations. An example of geometric operation is the midpoint (of two points). We can apply this operation several times in a construction to different pairs of points. Similarly, in a generic construction a rule can be applied several times to sets of points. Only one operation of the rule can take place at time - and that same operation acts everywhere the rule is applied

Figure 53 illustrates a rule that contains three operations:

- midpoint (of two points),
- the third vertex of a positively oriented equilateral triangle (based on two points)
- a free point on a line (through the two points).

Each operation of the rule acts on a pair of points and creates a new point. The rule was applied to the points $A, B$ and then to $B, C$.




Figure 53
The rule gives rise to three examples, one for each operation in the rule. The points created with rules have a peculiarity. If they are free points, they change position but they cannot be dragged with the mouse. Thus, the red points in the third example in Figure 53 are free points on the lines $A B$ and $B C$. They change position each time the example is displayed, but they cannot be dragged.

The analogy between the rules and operations is only partial. In fact, a rule consists of three components:

- The first component is the set operations that can take place when a rule is applied. The operations involved in the rule act only on a certain number of points. An operation, like 'construct a line through a given point and parallel to a given line' cannot be included in a rule. On the other hand, the operation 'construct a line through a given point and parallel to a line through two given points' is allowed.
- The second component is the number of points on which a rule acts. This number is specified when a rule is declared. The same rule can be applied several times in a generic construction on different sequences of points, each consisting of the same number of points.
- The third component is the role of the order of points in a sequence on which a rule operates and in particular the role of the first point (the fix-first-point attribute).


Figure 54
The declaration of a new rule occurs simultaneously with its first application. To declare a rule, we must specify the operations to be included in the rule, the points subject to the rule, and the fix-firstpoint status. Each subsequent occurrence of the rule will contain the same operations, the rule must be applied to the same number of points, and the fix-first-point status cannot be changed either. Figure 54 shows the process of declaring a new rule Pobject2. The 'project onto line' operation has been selected as one of the operations. Note the ' 3 :' in front of the operation name - it indicates that the operation uses three points (the number of the selected points of the rule may be greater). Also note the magenta explanation of the operation - if the operation is applied to three points, then the 1 st point is projected orthogonally onto the line passing through the $2^{\text {nd }}$ and the $3^{\text {rd }}$ point.

Although one needs not to worry about the components in simple cases, we explain the role of the components with some examples.

Assume we have a rule that yields an object. The rule consists of several operations to be applied to a set of $n$ points. Let us focus on one operation within the rule. Suppose the operation yields the resulting object taking $m$ points $(m \leq n)$. The operation within the rule acts on every $m$-tuple of $n$ points and all arrangements within the $m$-tuples (i.e. on all permutations of $m$-points out of $n$-points) yielding an object. Arrangements that are redundant, according to the meaning of the operation, are ignored. By setting the fix-first-point attribute a restriction is imposed: The first point in the list of selected points (of a rule) is also the first point of all considered permutations of points (for all operations contained in the rule).

We clarify the role of sequence of points with some examples:

| Configuration, operation, and <br> the sequence of points | Yielded objects within rule if <br> fix-first-point is OFF | Yielded objects within rule if <br> fix-first-point is ON |
| :--- | :--- | :--- |
| 2: Point at $1 / 3$ of segment |  |  |

3: Project onto line
3: Project onto line

An operation within a rule generally results in a sequence of objects (only one created object appears per example). To make rules manageable, it is better to use within a rule only operations that act on the same number of points. Also, a rule should require the same or a slightly larger number of points than the operations contained in the rule.

The rules in the Generic menu are divided into two or three groups. In the next subsections we give an overview of the rules. All rules create new objects from points. The names of the rules are fixed, the first letter of the name indicates the type of objects created by the rule ( P - point, L - line, C circle, T - triangle, Q - quadrilateral, S -conic). For example, the names of the rules for creating points are Pobject1, Pobject2, Pobject3, and so on. An exception are the rules ETC1, ETC2, ETC,.. for ETC triangle centres.

The commands in the first two parts of the Generic menu are used just like other commands for creating constructions. The commands appear like commands for creating a point, line, or other object. In fact, they create objects in the current construction, which is the base example, but at the same time they declare and/or apply a rule in the generic construction. For example Figure 53 illustrates a simple acting of a rule containing three operations. When the rule is declared or applied to a set of points, one of the operations contained in the rule also becomes a corresponding operation in the base example, which is also displayed in the construction.

### 5.3.1 Rules for creating simple objects

The commands for the rules for creating points, lines, and circles are located in the top part of the Generic menu commands. When one of these commands is activated, a form appears (Figure 55). We will take a closer look at the form for creating a rule for points, since the forms for creating lines and circles are pretty self explanatory.


Figure 55
In the list of operations that can be included in the rule for points there are operations (e.g. midpoint) that do not require an explanation and groups of operations that do.

Point at $x$ of segment. The values listed are $1 / 2$ (midpoint), $1 / 3,1 / 4$, and ( $\sqrt{5}-1$ )/2 (golden ratio). You can add more values to the list by clicking Options/Divide segment values (lower right corner of the form).

Triangle $3^{\text {rd }}$ vertex $\mathbf{x x x}$. Given two vertices (green coloured points in Figure 56), this group of commands creates the $3^{\text {rd }}$ vertex (red coloured point) of a positively oriented triangle. The position of the third vertex is described (up to direct similarity) with one or two conditions in terms of parameters shown in Figure 56. Some examples: ' $A=60 \& B=60$ ' positions the $3^{\text {rd }}$ vertex of an equilateral triangle; ' $C=90$ ' positions the $3^{\text {rd }}$ vertex on a random point on a semicircle whose endpoints are the given points; ' $a: b=2 \& A=72$ ' or ' $a: b: c=5: 6: 7$ ' are also acceptable descriptions. Some common names are also allowed as descriptions of the resulting triangle: equilateral, 345 (i.e. a triangle similar to a right triangle with sides $3,4,5$ ), isosceles, etc. The list of Triangle $3^{\text {rd }}$ vertex operations can be modified by deleting or adding new descriptions. You can modify the list of commands by clicking Options/Triangle 3rd vertex (lower right corner in the form) and filling the form that appears.


Figure 56
ETC triangle centres $\mathbf{x x}$. In the list of operations, there is a group of operations that yield some ETC centres from three given points. You can modify the list using Options/ETC triangle centres (lower right corner of the form). In the form that appears specify the numbers of ETC centres to appear in the list. Note that a full list of ETC centres is available in another group of rules.

The rules for creating lines and circles are self-explanatory.

It is also possible to create rules for numeric parameters. These rules are simply lists of numbers or numeric expressions.

### 5.3.2 Rules for transforming simple objects

The Transformation rule creates new points (lines, circles) from existing originals using a set of selected transformations. The rule leaves the original untouched, merely adding a new object of the fame type as the original to the construction. The operations (i.e. transformations) in the rule are always defined in terms of some points.

To declare a transformation rule

1. Activate the Generic/Transformation command.
2. Select the object (point, line, circle) to be transformed.
3. A form appears (Figure 57), the name of the declared rule is Ptransf1, Ptransf2,... for points, Ltransf1, Ltransf2,... for lines, Ctransf1, Ctransf2,...for circles.
4. Fill in the form and press OK. A new object appears in the base construction.


Figure 57
We first comment on the form for declaring rules for transforming lines. Recall that the form appears after a line was selected in the base construction. In our case (Figure 57), the base example clearly contains points $A, B, C$. You need to select the operations and the points that define the operations. In Figure 57, three points have been selected and two operations (rotation by 30 degrees and translation). Rotation by 30 degrees is defined by 1 point (see '1:' in front of the name of the operation). Thus the generated line in the examples is the original line rotated by 30 degrees around $A$, around $B$ and around $C$. In further examples (resulting from the same rule) the generated line is the translation of the original line by vectors $A B, B A, A C, C A, B C, C B$. Altogheter, the rule produces 9 lines, which are transformations of the original line.

In the list of operations for transformation rules, besides self-explanatory entries, there are two groups of transformations: 'rotate by $x$ degree' and 'dilatate by factor $x$ '. The values $x$ in the list can be modified by setting the desired values with the commands Options/Rotation angles and Options/Dilatation factors (lower right corner of the form).

The rules for transforming points have a peculiarity. Suppose the base construction contains a point $P$ and points $A$ and $B$. We declare a rule for transforming of a point and choose the point $P$. The point to be created will be thus a transformation of $P$. Consider now the form that appears.


Figure 58
Among the listed operations you can see some 'standard' transformations. For example, the entry '2: translate' in our case would yield 2 examples: the point $P$ translated by $A B$ and $P$ translated by $B A$. On the other hand, observe the entry ' 2 : centre of incircle'. Centre of incircle is usually not considered a transformation, it is rather considered an operation on 3 (not 2) points. In such cases the selected point (to be transformed) is considered the first argument of the operation. The transformed point $P$ in this case is thus the incentre of the triangle PAB. Mixing geometric operations and transformation may appear confusing, but on the other hand enables the declaration of richer rules.

The next group of rules are all defined on a fixed number of points.

### 5.3.3 Triangle A-points

The rules named Apoint1, Apoint2,... contain operations that create points in a triangle, often with respect to only one of the vertices of the triangle. These rules can only be applied to triplets of points. As with any rule, the operations in the rule are applied to all permutations of the points in the triplets. So a single operation in the rule will result in up to 6 different points in respective examples. If the first point of the triplet is fixed, a single operation gives rise to 1 or 2 points.

Here are two examples of A-operations:

| Configuration, operation, <br> sequence of points | Yielded objects within rule if <br> fix-first-point is OFF | Yielded objects within rule if <br> fix-first-point is ON |
| :--- | :--- | :--- |
| Points: A, B, C <br> Operation: Point at $1 / 3$ of A- <br> side |  |  |

Points: $\mathrm{A}, \mathrm{B}, \mathrm{C}$
Operation: Angle A bisector
point

The list of operations for triangle A-points contains common operations for points, perhaps modified with respect to a specific vertex. Some operations are rather specific to triangles. In addition to triangle centres (the list can be modified with Options/ETC triangle centres) the list of operations contains, relative to a vertex, the pedal point, the Cevian point, the circumcevian point, and the circlecevian point of the included triangle centres (see Figure 59). In this way, a rich variety of operation can be contained in a single rule.


Figure 59

### 5.3.4 Rules for triangles and quadrilaterals on a segment

The Generic/Triangle on segment command creates a rule that yields various types of positively oriented triangles with two given vertices. The rules for triangles are named Tobject1, Tobject2,... The entries in the list of operations for triangles are the same as for Triangle 3rd vertex, except that the sides of the triangle are also displayed. The types of triangles in the list of operations, more precisely the triangle's 3rd vertices, can be set and changed by the user with a click on Options/Triangle 3rd vertex.

The command Generic/Quadrilateral on segment creates a rule that yields various types of positively oriented quadrilaterals with two given adjacent vertices. The rules for quadrilaterals are named Qobject1, Qobject2,...

The rules for triangles and quadrilaterals on a segment are ordinary rules and can be used in constructions just like other rules. However, they are primarily used to create the object at the very beginning of the construction process. When we study the properties of various triangles or quadrilaterals, it is useful to initiate the generic construction with 2 points and a rule for triangle or quadrilateral.

An example with detailed description of the use of rules for triangles and quadrilaterals on a segment can be found in Section 0 .

### 5.3.5 Rules for triangle objects

It is possible to create rules for all kinds of triangle objects. The rules are generic versions of most of the commands for creating triangle objects in Sketch menu Special. The rules for creating ETC centres are named ETC1, ETC2,..., the rules for triangle lines can take the names Tline1, Tline2,..., for circles Tcircle1, Tcircle2,... and so on.

All rules in this group require exactly three points as vertices of a triangle, and possibly one or more as an argument (for example, the Cevian triangle of a point). All rules of this group are also obtained in a very similar fashion. We illustrate the process for the case of rule for triangle circles. We activate the command Generic/Triangle objects/Triangle circles. In the form that appears (Figure 60, left), we checkmark exactly three triangle vertices. We can use a previously declared rule or decide to declare a new rule. In the latter case, after clicking OK, a second form appears (Figure 60, right). In this form, we select the type of circles to include in the rule and click OK.


| T derived objects TC001 |  |  |  | | |
|---|---|---|---|---|---|
| Choose from <br> See also Triangles (many circles are circumcircles of triangles) |  |  |  |
|  |  |  |  |
| $\wedge$ |  |  |  |
| Incircle |  |  |  |
| Circumcircle Nine point circle |  |  |  |
| Inner Soddy circle |  |  |  |
| Outer Soddy circle |  |  |  |
| 1st Lemoine circle |  |  |  |
| Brocard circle |  |  |  |
| Apollonius circle |  |  | $\checkmark$ |
| Description (Right click for more) |  |  |  |
| Special \| Triangle derived objects | Circle | Incircle |  |  |  |
| Incircle |  |  |  |
| 1. (Ref. triangle) |  |  |  |
| Given is the triangle $A B C$. The incircle (the inscribed circle) of the triangle $A B C$ lays inside the triangle $A B C$ and touches all three sides of the triangle. The centre of the incircle is the common intersection point of the bisectors of the triangle's (interior) angles. |  |  |  |
| < |  |  |  |
|  |  |  |  |
|  |  |  |  |
| $\bigcirc$ Line © Circle ¢ Triangle $\subset$ Conic $\Gamma$ abc |  |  |  |
| $\Gamma$ See picture $\sqrt{\mathrm{V}}$ Display text OK Cancel |  | Import constr |  |

Figure 60

### 5.3.6 Editing rules

Creating a generic construction requires some preparation, since the user has limited control over the rule once it is declared. We present some notes on this here.

It is important to bear in mind that a generic construction cannot be modified when the Examplesform is displayed (see Section 5.2.2). The rules of a generic construction can only be changed when the Examples-form is not displayed.

The command Generic/Manage rules allows to do changes to the existing rules. It is possible to delete a rule, but note that deleting a rule does not delete the object(s) created by the rule in the base example. It is also possible to change the rule's selection of operations. Similarly deleting an object, created by a rule, does not delete the rule, only the object.

On the Examples-form you may have noticed a button More... in the upper right corner. This button that provides access to some commands. The first command allows you to manage rules apparently the same command as in the Generic menu. But there is one big difference. The command in the Examples-form only modifies the rules locally. When the Examples-form is closed, the rules are the same as they were when the Examples-form was opened. So it is possible to change the rules locally while working on examples without changing the generic construction.

The button More... provides access to a command that is rarely used but can be very useful when needed. It is the Set as base example command. The command makes the current (displayed) example as the base example of the generic construction (and yes, this changes the generic construction). When the base example of a created generic construction is not appropriate (e.g. some constructed points coincide in the base example, but not in others), it is a good idea to use this command. The command should be used with caution, because all examples are obtained by applying rules to the base example.

### 5.4 Examples of generic constructions

## Example 1

Consider in a quadrilateral $A B C D$ the incentres $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ of the triangles $B C D, C D A, D A B, A B C$. Is $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ a cyclic quadrilateral (see Figure 61)? Is it cyclic for some special quadrilaterals? What if $A^{\prime}$, $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$ are other triangle centres?

A generic construction can help to find an answer to the above questions at an observation level. For this purpose, we create a generic construction that considers different types of quadrilaterals and different centres, e.g., X1 to X5.


Figure 61

There are several ways of working out this task. We show here the one based on properties as criteria when scanning the examples. Here is a detailed description of the whole process (including the creation of the generic construction). The obtained generic construction is in file Generic_04. $p^{39}$.

1. We start by declaring a rule Qobject1 for quadrilaterals.

- Draw the points $A$ and $B$.
- Activate the command Generic/Quadrilateral on segment.
- Fill the form: checkmark points $A$ and $B$ and choose the types of quadrilateral. In our case we selected the following quadrilaterals: random, bicentric, cyclic, diametric, and tangential. - Then click OK.

2. Let us declare the rule Pobject1 for the triangle centres X 1 to X 5 .

- Activate the command Generic/Point.
- In the list of operations select ETC triangle centre X1, ... to ETC triangle centre X5.
- Checkmark the points B, C, D. (In this case, the order is irrelevant, as is FixFirst status.)
- The rule Pobject1 (new) is declared after you press the button OK.
- The incentre of triangle BCD appears. Label it $A^{\prime}$. ( $A^{\prime}$ is thus the 'variable' point created by the rule Pobject1 in triangle BCD.)

3. We apply the rule Pobject1 to the triangles CDA, $\mathrm{DAB}, \mathrm{ABC}$.

- Activate the Generic/Point command.
- Select the rule Pobject1. A list of previously selected operations appears.
- Checkmark the points C, D, A. (In this case the order is irrelevant, as is the FixFirst status.)
- Press OK. The incentre of the triangle CDA appears. Label it $\mathrm{B}^{\prime}$.
- Repeat these four steps for the triangles $D A B$ and $A B C$ to get points $C^{\prime}$ and $D^{\prime}$.

4. The generic construction is ready. To start the observations, click on the Gen button on the toolbar on the right of the display.

- In the form that appears, click on the Manage properties button. Select the red coloured Shapes (all) entry. This entry includes the observations of the shapes of triangles and quadrilaterals. Fill in the form as shown in Figure 62.
- Click on the Properties done button (otherwise you will not be able to continue).

[^30]

Figure 62
4. We are interested only in the shape of quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, so it is important to restrict the observations to these points. Therefore, in the Treatment section of the observation pane fill in the entry Consider only points with $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
5. Press Start Scan button. All examples will be scanned.

- Press Start Review and then repeatedly Continue to review the results of observations. You can see the observed properties of each found example in the Observed properties pane.


## Example 2



Figure 63

Let $P$ be the incentre of a given triangle $A B C$. It is well known that the Euler lines of the triangles $P B C$, $P C A, P A B$ concur in a point $Q$. Let us explore whether a similar concurrence occurs when $P$ is a different triangle centre and when a different type of triangle lines is considered.

We present a brief description of how to create and analyse the generic construction for this investigation. You can download it as file Generic_05. $p^{40}$.

1. Construct a triangle $A B C$. (You can use the command Special/A triangle)
2. Use the Generic/Point command to declare the rule for the ETC centres X1 to X5 of the triangle $A B C$. On the displayed base example the point $P$ (as incentre $X 1$ ) appears.
3. On the base example create the line segments $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}$.
4. Use the Generic/Triangle objects/Triangle lines command to create the rule Tline1 for triangle lines of the triangle with vertices $P, B, C$. Select all available lines as operations. When you are done the Euler line of the triangle $P A B$ appears.
5. Using the Generic/Triangle objects/Triangle lines command, apply the Tline1 rule on the triangle PBA and then on PAB. The Euler lines of these triangles should appear on the screen.
6. Construct a point $Q$ as the intersection of two of the constructed (Euler) lines. If the three (Euler) lines concur then $Q$ is the point of concurrence.
7. Construct a condition concur_xxx for concurrency of the three lines. Use the command Advanced/Check property/ConcurrentL.
8. Press the Gen button. The Examples-form appears. Checkmark both rules (Tpoint1 and Tline1). Checkmark also the Concu_xxx condition. For Scan mode choose the option

## Auto.

9. Press the button Start Scan. The list of results (examples) is displayed. Press the Start review and then the Continue button to view and analyse each case in the result list.
[^31]Scan started (60 examples)
Example 1 of 60
Pobject1: $\mathrm{P}=\mathrm{ETC}$ triangle centre

## $x(1)$ of $A B C$

Tline1: L2 = Euler Line(PCA)
Tline1: L3 = Euler Line(PAB)
Tline1: L1 = Euler Line(PBC)
Concu_xxx TRUE

Example 11 of 60
Pobject1: $\mathrm{P}=\mathrm{ETC}$ triangle centre $x(1)$ of $A B C$
Tline1: L2 = Brocard axis(PCA)
Tline1: L3 = Brocard axis(PAB)

Tline1: L1 = Brocard axis(PBC)
Concu_xxx TRUE

Example 37 of 60
Pobject1: $P=E T C$ triangle centre $x(4)$ of $A B C$
Tline1: L2 = Euler Line(PCA)
Tline1: L3 = Euler Line(PAB)
Tline1: L1 = Euler Line(PBC)
Concu_xxx TRUE
Example 42 of 60
Pobject1: P = ETC triangle centre
$x(4)$ of $A B C$

Tline1: L2 = van Aubel Line(PCA)
Tline1: L3 = van Aubel Line(PAB)
Tline1: L1 = van Aubel Line(PBC)
Concu_xxx TRUE
Example 47 of 60
Pobject1: P = ETC triangle centre $x(4)$ of $A B C$
Tline1: L2 = Brocard axis(PCA)
Tline1: L3 = Brocard axis(PAB)
Tline1: L1 = Brocard axis(PBC)
Concu_xxx TRUE
Done

## Example 3



Figure 64
Let $D$ and $E$ be two ETC centres of a given triangle ABC (Figure 26). Does it happen for some pair of centres that the lines AD and CE are perpendicular? If not for general triangles, does it happen for some special type of triangles?

To investigate this we make a generic construction ${ }^{41}$ (file Generic_06.p). We shall consider the centres X1 to X 29 for D en E . We shall consider the following types of triangles: a random triangle, a triangle with angle C=60 degrees, a triangle proportional to the $6,9,13$ triangle, a triangle where $a=2 b$.

Here is an overview of the construction steps:

1. Draw the points $A$ and $B$.
2. Use the Generic/Triangle on segment command to create the rule for a triangle with $A, B$ as two vertices. In the form choose the following 3rd vertices operations: random, $\mathrm{C}=60$, $a: b: c=6: 9: 13, a: b=2$.

[^32]3. Use the command Generic/Triangle objects/ETC centres to create the rule Tpoint1 for point D. Checkmark the points $A, B, C$ and select the centres $X 1$ to $X 30$. The point $D$ appears as the X1 centre of ABC.
4. Use the Generic/Triangle objects/ETC centres command to create the Tpoint2 rule for point E. Checkmark points $A, B, C$ and select the centres $X 2$ to $X 30$. The point $E$ appears as X2 centre of $A B C$. Note: Two separate rules are needed for the points $D$ and $E$. The selected operations start from X 2 to avoid overlapping of points D and E in the base example.
5. Construct lines AD and CE. Use the Advanced/Check property/PerpendicularL command to create the condition parameter Perpe_XX for the perpendicularity of AD and CE.
6. The generic construction is ready. It contains almost 3500 examples. To check the condition of perpendicularity on them, press the button Gen.
7. In the Examples-form checkmark all the rules as well as the Perpe_xx condition. For scanning mode choose the Fast option. OK Geometry observes that 3 examples satisfy the condition.
8. Use Start Review and Continue to identify them.

### 5.5 Triangle analysis of generic constructions

A generic construction contains some or many examples of constructions. Is it possible to do triangle analysis for all examples of a generic construction? Yes, it is possible, in many ways. We illustrate this with the example from Section 4.1. In Figure 65, the point $P$ is the orthocentre of the triangle $A B C$. The points $A^{\prime}, B^{\prime}, C^{\prime}$ are the centres of the circles passing through the points $P, B, C$, the points $P, C, A$, and the points $P, A, B$. We have observed that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur in a point (the related check of the property showed concur_xxx=True). We wonder if the point of concurrency $Q$ of the three lines is a known triangle centre.


Figure 65

The OK Geometry file Generic_03. $\mathrm{p}^{42}$ is a generic version of the construction described. It consists of two rules: Pobject1 for the point $P$ yields the ETC centres X 1 to X 5 of the triangle ABC , and the rule Cobject1 yields the circumcircle, the incircle, and the 9-point circles of triangles PBC, PCA, PAB. To the construction already mentioned ${ }^{43}$ (file Generic_02.p) we added the point $Q$ as the intersection of the lines $A A^{\prime}$ and $B B^{\prime}$. In examples where the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur, $Q$ is the point of concurrency ${ }^{44}$. We will study the position of point of concurrency $Q$ with regard to the triangle $A B C$ in all such examples of the generic construction.

We first show a simple way to find the position of the point of concurrency in examples where the lines $A A^{\prime}, B B$ ?, $C C^{\prime}$ concur.
3. Activate the command Manage generic construction (just click on the Gen button in the toolbar on the right side.
4. In the form that appears checkmark the rules Pobject1 and Cobject1.

Also checkmark the Concu_xxx condition, as we will only consider examples where concurrency occurs.
For the Scan mode choose the Criteria option.
5. Press Start Scan. The first example in which the concurrency occurs is displayed.
6. If you want to examine the position of point $Q$ in the reference triangle $A B C$, simply activate the Analyse object in reference triangle command (or press the corresponding button on the toolbar in the right) and pick the point Q . Figure 66 shows the output in one of the examples of generic construction (note that we set the number of centres considered to about 16000 and used the More option).
7. Click on the Continue button for the next example that satisfies the criteria.
8. Repeat the last two steps as needed.

[^33]

Figure 66
The above method is time-consuming when there are several examples to be considered in the generic construction. In such cases is better to use a faster automatic method as follows:


Figure 67
2. Activate the Manage generic construction command (just click the Gen button on the toolbar to the right.
3. In the form that appears, checkmark the Pobject1 and Cobject1 rules.

Also checkmark the Concu_xxx condition, since we will only consider examples where
concurrency occurs.
For the Scan mode choose the Fast option.
4. Press Start Scan and wait a bit. A list of the sequential number of examples that satisfy the condition of concurrency appears. (You can at any time, now or later, display and analyse these examples, but for now we will not.)
5. Activate the Triangle analysis module (the button with the triangle in the main menu in the upper left corner of the display).
6. Carefully fill some data in the form that appears (Figure 67): Select Object analysis (it is set by default).
7. Set Report size to Minimal. Later you can repeat the analysis with other option. It is advisable to start with the Minimal option, otherwise the results can take up a lot of space and time. In the Examined object(s) entry write the object under analysis (in our case Q). In the entry Reference triangle write $A B C$, our reference triangle.

Set the range of Considered triangle centres according to your wishes.
8. The most important thing is the entry Examples to examine. We set it to review since we want to do the analysis only for examples in the selection of examples that satisfied the criteria. The option scan examines all examples, while the option current, obviously, examines the current example only.
9. Click on the Study button at the bottom menu and wait for the results.

The Triangle analysis offers many other options that can be profitably used together with the Manage generic construction form (i.e. the Examples-form).

### 5.6 Formulae observation in generic constructions

A generic construction is a family of constructionally isomorphic dynamic constructions called examples of a generic construction. All examples of a generic construction are built of the same objects, though they are not related in the same way, so the properties of the examples are not the same. Due to constructional isomorphism of the examples of a generic construction, it is possible to observe the relationships between geometric quantities for a particular or for all the examples of a generic construction.

All three variants (simple, advanced, triangle) of Observing formulae (see Section 4) can be applied to generic constructions in the very same way as on ordinary dynamic constructions. As usually, we explain the working procedure with a simple example:


Figure 68
It is well known that in any triangle the centroid (X2) divides each median of the triangle in the ratio 2:1. Let us examine the analogous ratios for some other triangle centres: X1 (incentre), X2 (centroid),...X11 (Feuerbach point). We proceed as follows:

## Step 1. Provide the generic construction to be investigated.

For convenience, a generic construction is provided in the file Generic_07.p (Figure 68), so that you can open this file in OK Geometry ${ }^{45}$. In the generic construction the position of the point $P$ is subject to the rule Pobject1. The generic construction consists of 11 examples, where the point $P$ takes the place of centres $\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{X} 11$ of the triangle ABC .

Step 2. Activate the generic construction with the Gen button. Select the rules to apply.

[^34]

Figure 69
The Gen button activates the form for managing examples of generic construction (Figure 69). In the form checkmark the Pobject1 rule.

Step 3. Invoke the command Commands|Observe formulae |Triangle.
The form for Observe formulae will appear (Figure 70).
You can as well call the simple or advanced variant of the Observe formulae command and proceed in an analogously as described below.

Step 4a. Observing a specific example of a generic construction.

1. Set the slide bar in the examples manager to the desired value (Figure 70). For example, if you want to consider the example 6 (i.e. $P$ is the symmedian point of $A B C$ ), set the slide bar to 6.
2. Click the Set button (next to the slide bar). The example 6 appears.
3. Fill the Observe formulae form, in our case we observe the ratio $d(A P): d\left(P A^{\prime}\right)$. In particular, be sure that the entry Examples is set to current.
4. Click on the Observe button in the Observe formulae form. The results appear in the results area. You can use the results as described in Section 4.2.3.

Repeat steps 1 to 4 for additional examples as desired.


Figure 70

## Step 4b. Automatic observation of all examples of a generic construction.

1. Fill the Observe formulae form, in our case we observe the ratio $d(A P): d\left(P A^{\prime}\right)$. In particular, be sure that the entry Examples is set to scan (Figure 71).
Note that the triangle variant of Observe formulae command for all examples can be very time consuming, especially if Strength is set to 3 or 4 and/or Transform variables is checkmarked. Checkmarking Stop at first cuts the computation time, but you obtain only one (not necessarily the most elegant) formula for each example of the generic construction.
2. Click on the Observe button in the Observe formulae form. The list of results for all examples appears in the results area. You can use the results as described in Section 4.2.3. You can stop the observation by pressing the Escape key on the keyboard.
3. At the end of the observation, you are asked whether to pass to the examples manager the information for which examples something useful was found. If you choose to do so, you can review the examples with the Begin Review and the Continue buttons in the form for managing examples (Figure 71).

For the considered generic construction OK Geometry has suggested various expressions for the ratio $d(A P): d\left(P A^{\prime}\right)$ for all examples, i.e. for all centres X1 to X11.


Figure 71


[^0]:    ${ }^{1}$ OKExamples $\backslash O K G \_$Plus $\backslash$ Triangle_01.p

[^1]:    ${ }^{2}$ ETC is acronym for Encyclopedia of Triangle Centers (https://faculty.evansville.edu/ck6/encyclopedia/ETC.html).

[^2]:    ${ }^{3}$ OKExamples\OKG_Plus\Triangle_02.p

[^3]:    ${ }^{4}$ OKExamples\OKG_Plus\Triangle_03.p

[^4]:    ${ }^{5}$ OKExamples\OKG_Plus\Triangle_05.p
    ${ }^{6}$ OKExamples\OKG_Plus\Triangle_04.p
    ${ }^{7}$ OKExamples\OKG_Plus\Triangle_06.p

[^5]:    ${ }^{8}$ OKExamples\OKG_Plus\Triangle_07.p

[^6]:    ${ }^{9}$ OKExamples\OKG_Plus\Triangle_08.p

[^7]:    ${ }^{10}$ OKExamples\OKG_Plus\Triangle_09.p

[^8]:    ${ }^{11}$ OKExamples\OKG_Plus\Analysis_01.p

[^9]:    ${ }^{12}$ OKExamples\OKG_Plus\Analysis_02.p

[^10]:    ${ }^{13}$ OKExamples\OKG_Plus\Analysis_03.p

[^11]:    ${ }^{14}$ OKExamples\OKG_Plus\Analysis_04.p

[^12]:    ${ }^{15}$ OKExamples\OKG_Plus\AdvQuery_01.p

[^13]:    ${ }^{16}$ OKExamples \OKG_Plus\AdvQuery_02.p

[^14]:    ${ }^{19}$ OKExamples \OKG_Plus\AdvQuery_05.p

[^15]:    ${ }^{20}$ OKExamples \OKG_Plus\AdvQuery_06.p
    ${ }^{21}$ OKExamples\OKG_Plus\AdvQuery_07.p

[^16]:    ${ }^{22}$ OKExamples\OKG_Plus\Formula_01.p

[^17]:    ${ }^{23}$ OKExamples\OKG_Plus\Formula_02.p

[^18]:    ${ }^{24}$ OKExamples\OKG_Plus\Formula_03.p

[^19]:    ${ }^{25}$ OKExamples\OKG_Plus\Formula_04.p
    ${ }^{26}$ OKExamples\OKG_Plus\Formula_05.p

[^20]:    ${ }^{27}$ OKExamples\OKG_Plus\Formula_06.p
    ${ }^{28}$ OKExamples\OKG_Plus\Formula_07.p

[^21]:    ${ }^{29}$ OKExamples \OKG_Plus \Formula_08.p

[^22]:    ${ }^{30}$ OKExamples\OKG_Plus\Formula_09.p

[^23]:    ${ }^{31}$ OKExamples \OKG_Plus \Formula_10.p

[^24]:    ${ }^{32}$ OKExamples\OKG_Plus\Formula_12.p

[^25]:    ${ }^{33}$ OKExamples\OKG_Plus\Formula_13.p
    ${ }^{34}$ OKExamples\OKG_Plus\Formula_14.p

[^26]:    ${ }^{35}$ OKExamples \OKG_Plus\Generic_01.p

[^27]:    ${ }^{36}$ OKExamples \OKG_Plus\Generic_02.p

[^28]:    ${ }^{37}$ OKExamples \OKG_Plus\Generic_01.p

[^29]:    ${ }^{38}$ OKExamples\OKG_Plus\Generic_02.p

[^30]:    ${ }^{39}$ OKExamples\OKG_Plus\Generic_04.p

[^31]:    ${ }^{40}$ OKExamples \OKG_Plus\Generic_05.p

[^32]:    ${ }^{41}$ OKExamples \OKG_Plus\Generic_06.p

[^33]:    ${ }^{42}$ OKExamples\OKG_Plus\Generic_03.p
    ${ }^{43}$ OKExamples\OKG_Plus\Generic_02.p
    ${ }^{44}$ OKExamples\OKG_Plus\Generic_03.p

[^34]:    ${ }^{45}$ OKExamples\OKG_Plus\Generic_07.p

