OK Geometry Basic

Part II
 Reference for OK Geometry Sketch Editor (v. 18.1)
 Zlatan Magajna

April 2020

Contents

1. Sketch Editor of OK Geometry 4
1.1. The interface 4
1.2. A first example 5
2. General guidelines 7
2.1. Finding commands. 7
2.2. The blue dot 8
2.3. Command first, then parameters. 8
2.4. Only labelled points count. 8
2.5. Alternative solutions 9
2.6. Safe points 9
2.7. The anchor command 11
2.8. Geometric transformations and numeric parameters 11
2.9. Commands on polylines 12
2.10. Emphasized, bleached, and transparent objects 12
2.11. Scenes. 13
3. Toolboxes 13
3.1. Visibility and current style information 13
3.2. Sketch Editor toolbox 14
4. Description of the menu commands 17
4.1. Sketch Editor: menu organisation.. 1 17
Action commands 17
Point commands 17
Line commands 17
Circle commands 17
Number commands 17
Transformation commands 17
Advanced commands 17
(Special commands) 17
4.2. Action commands 17
5. New project 17
New construction 17
Drag point/parameter 18
Hide 18
Show hidden 18
Delete 18
Redefine object 18
Visually align 2 points 19
Labels|Auto label 19
Labels|Label vertex 19
Labels|Clear label 19
Labels | Anchor label/angle/text 19
Labels|Set next label 19
Labels|Label all 19
Labels |Clear all labels 20
Mark|Mark angle 20
Mark|Mark area 20
Mark|Mark arrow 20
Mark|Mark congruence 21
Mark|Marker 21
Mark|Detour point 21
Mark|Detour segment 22
Mark|Text 22
Background 22
Background|Background from file 22
Background|Background from clipboard 22
Background|Clear background 23
Scenes 23
Emphasise|Toggle bleach 23
Emphasise|All bleach 23
Emphasise|Unmark all bleach 23
Emphasise|Toggle emphasis 24
Emphasise|Unmark all emphasis 24
Emphasise|Toggle transparent 24
Emphasise|Unmark all transparent 24
Emphasise|Make everything transparent 24
Emphasise|Use current attributes of objectin all scenes24
Restyle objects 25
Undo command 25
Redo command 25
Zoom|Zoom in [Ctrl+Plus] 25
Zoom|Zoom out [Ctrl+Minus] 25
Zoom|Pan view 25
Zoom|Zoom view 25
Zoom|Zoom save [Ctrl+End] 25
Zoom|Fit points/objects [Ctrl+Home] 25
4.3. Point commands 26
Point 26
Point on object 26
Intersection 26
PointXY 26
Safe points 27
Midpoint 27
Divide ratio 28
Centre of circle 28
Nearest point 28
At length 28
Triangle centres 28
Harmonic conjugate 28
Vertices 29
Conic points 29
Intersections| Intersections 30
Intersections| Nearest intersection 30
Intersections| Farthest intersection 30
Grids|Uniform divide 30
Grids|Rectangular grid 30
Grids | Circular grid 31
4.4. Line commands 31
Line: 2 points 31
Line: point + angle 31
Segment 31
Perpendicular segment 31
Polyline 31
Parallel line 32
Perpendicular line 32
Bisector 32
Angle bisector 32
Line: 2 objects 32
4.5. Circle commands. 33
Circle: centre + point 33
Circle: centre + radius 33
Compass 33
Apollonius circle 33
Circle: centre + object 34
Circle: radius + 2 objects 34
Circle: central angle + 2 objects 34
Circle: 3 objects 34
Arc 3 pts 35
Arc centre 35
Indicate arc 35
Conic 5 points. 35
4.6. Number commands 35
Distance to object 35
Radius of circle 35
Angle size 36
Length, perimeter 36
Area 36
Ratio of segments 36
Value, Expression 37
Compose conditions 37
Triangle expression 38
4.7. Transformations commands 38
Translation 39
Reflection 39
Rotation symmetry 39
Rotation 39
Dilatation 39
Similarity 40
Projectivity 40
Inversion wrt. circle 40
Compose transformations 40
Inverse transformation 40
Transform object 40
Other | Multiply object by grid 41
Multiply along polyline 41
Repeat transformation 41
4.8. Advanced commands 42
Shapes 42
Check property 42
Locus 42
Implicit locus 42
Implicit construction 43
Optimisation 44
Make macro 44
Get macro. 44
Execute macro 44
6. Examples 45
5.1. Midpoints in a quadrilateral 45
5.2. Inscribe a circle 46
5.3. Isosceles triangles on top of a triangle 48
5.4. A cyclic tangential quadrilateral. 50
5.5. The angular size of a line segment. 52
5.6. The pedal points 54
5.7. The Fermat point of a triangle 56
5.8. A minimal triangle 58
5.9. Making a macro 61

1. Sketch Editor of OK Geometry

Creating and editing constructions in OK Geometry is generally similar to creating and editing them in other dynamic geometry software. OK Geometry allows many operations that are common in dynamic geometry programs (e.g. dragging points, defining macros). However, there are differences due to the specific aims of OK Geometry. Dynamic geometry programs promote, above all, conceptual understanding - thus, only very simple construction commands are available, because students should understand how to work out constructions from basic operations. Furthermore, these programs enable elaborated visual representations for effective explorations and demonstrations. On the other hand, the aim of OK Geometry is to promote hypothetising, deductive reasoning and proving. Consequently, the commands of OK Geometry Sketch Editor allow fast and efficient design of geometric configurations. Besides direct non-trivial constructions (e.g. to construct a circle that touches three given circles) the Sketch Editor also allows implicit constructions and constructions based on optimisation. Such constructions are obtained by imposing additional restrictions or optimisation requirements to an existing construction. For example, we want to achieve in a construction that a triangle is equilateral or that its area is minimal. Using specific tools (described in the help file of Ok Geometry Basic) the student then analyses the designed configuration, studies its properties, perhaps finds how to construct it with compass and ruler, and, possibly, also proves some properties of the designed configuration.

Note that the Sketch Editor is not available in Easy mode of OK Geometry.

1.1. The interface

The Sketch Editor of the OK Geometry is accessed via the Sketch button on the main menu bar. To exit edit mode, click the Sketch button again or click another button on the main menu bar.

The left part of the interface (the information pane) contains various sections that can be collapsed or expanded (Figure 1). In the Task section you can write or edit the description of a task. The section Transformations \& Parameters contains the lists of transformations and parameters/expressions that are declared in a construction. Finally, the Treatment section contains information to be used in the analysis (outside the Sketch Editor). You can expand or collapse the sections by clicking the triangular button next to the section title (right click these buttons for a full expansion). The Help section contains explanations of the commands used.

The right part (the visualisation pane) contains the drawing of the current construction. Above the drawing is the menu line of the editor. Below the menu line there is a very important (red coloured) information line. Keep an eye on it - it tells you what is going on and what is expected of you (additional help on how to use the commands can be found in the Help section of the information pane, if the help for commands is activated). On the right of the drawing pane there is a toolbar with buttons for the commands that are frequently used.

Figure 1

1.2. A first example

The following example gives you an idea how to make constructions in OK Geometry. We construct a (dynamic) right triangle with the inscribed circle in it. Furthermore, we shall label the points in which the circle touches the sides of the triangle. Here are the steps to follow.

1. Enter the Edit mode by pressing the Sketch button in the main menu bar. The editor's menu appears above the visualisation area. (If the current construction is not empty use the File /New project command in the main menu.)
2. To draw a right triangle, select (click) the command Advanced/Shapes/Right triangle
3. The line below the menu (the information line) instructs you to pick three points (vertices): First a vertex at an acute angle, then the vertex at the other acute angle, and then the vertex at the right angle. The position of the third vertex is automatically corrected so that the triangle is right.
4. Label the vertices of the triangle. A simple way (but not the quickest) is to click the Label vertex button in the editor's toolbar (click the button with an underlined letter on it). Then click the vertices in the desired order. Immediately after a label is set you can change the position of the label with the mouse-wheel.
5. To draw the inscribed circle, select in the editor's menu the command Circle/Circle 3obj or, equivalently, right click the circle button and select the circle with digit 3 inside. This command draws a circle that touches or passes through three given objects (lines, points, circles).
6. Click on each of triangle's three sides. After you pick the first side the whole triangle is emphasised since the triangle was constructed as one object). A circle appears.
7. There are several circles that touch the three baselines of the sides (from inside or outside the triangle). To access them click repeatedly the Alt button in the editor's toolbar. Click Alt several times (or use the mouse wheel) until you obtain the desired solution.
8. Finally, to draw the points where the circle touches the sides, select the command Point/Point or click on the Point button on the editor's toolbar. Click on the three points of touch. These points are automatically labelled.

The construction is complete and ready to be analysed (Figure 2) - just click on the main menu button Observe. Among other properties, the analysis will point to the fact that the lines AD, BE, and CF meet at the same point (a well know fact to anybody who has heard of Gergonne point).

Figure 2

2. General guidelines

Most commands of the OK Geometry Sketch Editor are simple to use and there is no reason to study them in detail on the first reading. However, we strongly recommend that you read the following general guidelines for specific features of the OK Geometry Sketch Editor.

With the editor you can edit points, lines, line segments, polylines (polygon lines), circles, arcs, conics, transformations, and numerical parameters. Polylines are chains of line segments. Segments are therefore a special case of polylines. Note that OK Geometry does not work with rays and vectors.

2.1. Finding commands

To enable fast and efficient construction, the OK Geometry Sketch Editor contains many commands. The commands can be accessed via the toolbox in the right part of the editing pane (note that more buttons can be accessed by right-clicking on buttons), see Section 3, or via commands in the menu line. Although the commands and the positions of the commands in the menu follow a logical order, a beginner can have problems in finding them and using them. To overcome this, you can use the Search command help in the Help menu or press the F1 key on the keyboard. We explain this help using an example. Suppose you want to obtain a line that is tangent to two given circles. In the Search command prompt write an approximate name or word related to the command, for example tangent. In the form that appears you find a list of commands refer to your prompt. A click on each of the commands gives you (Figure 3)

- the position of the command in the menu,
- the parameters required by the command,
- important notes regarding the use of Alt and Anchor modifiers (see Sections 2.5 and 2.7),
- a description of the command,
- a pictorial explanation (click on the >>> sign for more illustrations).

In our case, we see that the sought command is Line: 2 objects. A right click on the Description part activates the command (when Sketch mode).

Figure 3

2.2. The blue dot

The blue dot in the upper left part indicates whether the construction is displayed in exact or perturbed mode. It also enables switching between the two modes and a quick way of setting some drawing parameters.

		Displayed construction	Left click on blue dot	Right click on blue dot
Perturbed mode	\ddots	One of the perturbed variants of the original construction.		A shortcut to configure frequently used sketch related parameters (e.g. mode of filling areas, font of point labels). You can also set the level of the displayed help for the construction Exact mode
	The original one (e.g. as imported from a system).	and perturbed mode		

Note. Internally, all observations are made in the perturbed mode. On the other side, all exports of constructions are made in the exact mode, irrespective of the status of the blue dot.

Note. Some constructions cannot be displayed in exact mode.
In general, it is rather unimportant which mode is active. In exact mode you see horizontal and vertical lines as horizontal and vertical. Furthermore, in exact mode there is a mechanism that makes it easy to construct visually horizontal and vertical lines (though they need not be horizontal or vertical by construction). On the other hand, in the perturbed mode the position of all free points often changes slightly.

2.3. Command first, then parameters

Actions of the Sketch Editor are executed by activating the appropriate command first, and then pointing to the involved objects or entering the data. The active command (together with required actions) is displayed in the information line just below the editor menu. It is a good practice to constantly check the information line, especially when you learn to use the program. Most commands remain active until either another command is activated or Esc is pressed. For example: To draw some points first click the command Point/Point and then click on the desired positions of one or more points. Similarly, to drag a point it is necessary to first click the command Action/Drag Point and then drag one or more points.
The execution of a command can be cancelled at any time by pressing the Escape key (Esc).

2.4. Only labelled points count

The label of a point consists of a single letter optionally followed by a numeral and/or apostrophes, for example: $\mathrm{A}, \mathrm{A} 2, \mathrm{~A}^{\prime}, \mathrm{k} 3, \mathrm{u} 1^{\prime \prime}$. Labels consisting of more than one character are also allowed, but must be
written in brackets where necessary, e.g. (AE) for AE. Label only points that are potentially relevant for the analysis. Labels are case sensitive. The characters x, y, z are not allowed in labels.
Note. Other objects (lines, circles, etc.) can also be labelled - either by writing the name immediately after the object is created or later using the textual information (see Mark|Text command). However, when analysing the construction only labels of points are considered, all other labels are ignored
Note. If a command results in a construction of a single point, this point is usually labelled automatically. It is possible to write the label of an object immediately after it is constructed. The position of the label can be changed using the mouse wheel or the Anchor command. Of course, the label and the position of the label can be changed later with appropriate commands.

2.5. Alternative solutions

Use the Alt button on the editor's toolbar ${ }^{1}$ (possibly together with the mouse wheel) for alternative operation results for constructions that give rise to two or more solutions. In such cases a red Alt button appears on the editor's toolbar. Only one solution is displayed at time. By pressing the Alt button repeatedly alternate solutions can be accessed. Note that some alternatives can be 'empty' or duplicated. For example, the task of constructing a circle that is tangent to three circles usually has several solutions. Only one is drawn at time. By repeatedly pressing the Alt button the desired solution is obtained. For convenience Alt button executes also analogies of some commands (e.g. parallel/perpendicular line). Figure 4 shows a simple example (line tangent to two circles) with several possible solutions including the radical axis. Using the Alt button it is possible to select the desired solution.

Figure 4

2.6. Safe points

Safe points is a feature that determines the behaviour of a point located on an object, e.g. line segment, segment of polyline, circular arc. Safe points feature can be turned ON or OFF. If Safe points is ON then line segments (segments of a polyline, circular arcs) in a construction of a point are treated as respective base objects. For example, a free point on a line segment is treated as a point on the baseline of the line segment, so that it can be dragged along the line outside the line-segment. The intersection point of two line segments, constructed as intersection under Safe points ON, is constructed as the intersection of

[^0]the corresponding baselines. We illustrate this feature with two examples (Figure 5).

Construction of points	Behaviour of the construction
 G is defined as the intersection of segments with Safe points OFF. H was defined as the intersection of segments with Safe points ON.	When A is dragged so that the segment $A B$ does not intersect the polyline CDE, the point G 'disappears'. Since H was constructed under Safe points ON, H is positioned at the intersection of the corresponding base-lines of the segments $A B$ and CD. (Note. The dotted lines are displayed here only for evidence.)
G was defined as a point on the polyline ABCA with Safe points OFF. H was defined as a point on the polyline ABCA with Safe points N.	As G is dragged around, it remains on the polyline, since it was constructed under Safe point OFF. The point H was constructed under Safe points ON, thus it was positioned on the line AB. When dragged H remains on the line AB. (Note. The dotted line is displayed here only for evidence.)

Figure 5

Whether a point is constructed with Safe points ON or OFF it depends on the type of intersection or linking one needs. The ON option is more robust in the sense that the intersection of two line segments always exists (unless the segments are parallel).

2.7. The anchor command

The command Anchor and the corresponding button \pm modifies a visual aspect of various object. The table explains and illustrates, which aspects are modified for different types of objects. The command is to be used repeatedly until the desired effect is achieved - a faster way is to use the scroll the mousewheel.

Object	Effect	Example before	Example after (possibly repeated) anchor
Point (label)	Changes the position of the label wrt. the point.		
Angle	Sets a different angle with the same base-lines as the original.		
Arrowed			
segment	Modifies the position and size of the arrows.		
Text/marker	Changes the position of the text/marker wrt. the reference point of the text.		

2.8. Geometric transformations and numeric parameters

Geometric transformations and numeric parameters are considered as explicit objects. For example, you can define a rotation around a point to be an object by itself. At any time you can apply this transformation to any object.

The used numeric parameters and transformations are displayed on the left of the display. The numeric parameters can be assigned a desired value or can be the result of a measurement. Numeric parameters can be 'dragged'. In expressions you can to parameter named 'mypar' as [mypar].

2.9. Commands on polylines

Commands that apply to line segments have, when applied to a polyline, two or three variants. Such commands can be applied to one segment of the polyline, to each segment of the polyline, or to the entire polyline. For example: The command Midpoint when applied to a polyline has three version:

- you can create the midpoint of the segment you pointed to,
- you can create the set of midpoints of each segment of a polyline,
- you can create the midpoint of the entire polyline (i.e. at the point that splits the polyline into two parts of equal length).

2.10. Emphasized, bleached, and transparent objects

Important objects, e.g. those representing a geometric property, can be declared as emphasized. In Sketch Editor it is possible to control the emphasis level with the Shift+Up/Down keys, with
Shift+mouse wheel, or with the Scenes command. Elsewhere the emphasizing level is controlled with sliders. The emphasizing level in icons can be changed at any time with sliders.

Objects that are important but can cause unwanted confusion can be declared as bleached. In this way they become less visible. In Sketch Editor the degree of visibility (bleaching level) can be adjusted with Alt+Up/Down keys, with Alt + mouse wheel, or with the Scenes command.

Objects can be also declared as transparent. Such objects behave similarly as hidden objects. However, transparent objects are , contrary to hidden objects, considered in the observational analysis.
Transparent objects are mostly used in scenes.
The described attributes of objects are mostly used in scenes, when a construction is presented as several scenes. Scenes differ among them only in the appearance of the objects: an object can be transparent in one scene and non-transparent in another, or can be emphasized in one scene and nonemphasized in other etc.

There are several commands for setting the emphasis, bleaching, and transparency status of objects. The usual way is to use the buttons for toggling the emphasis/bleaching status of objects.

Figure 6 displays a triangle ABC with bleached incircle and three emphasized line segments. The three variations show different bleaching and emphasizing effects.

Figure 6

2.11. Scenes

A construction consists of one or more scenes, which share a common underlying construction. The scenes of a construction vary only in the selection of objects that are emphasised, transparent, and bleached. The scenes are visible (can be displayed) only in Project mode with big icons. The aim of the scenes is to catch the attention of sub-configurations in the construction.

The scenes of a construction are managed with the Scenes command and the self explaining forms that is displayed when the command is active.

3. Toolboxes

3.1. Visibility and current style information

On the upper right of the Editor window there is a small toolbox with visibility indicators/switches and for setting the style (colour, widths, shape of lines/points, etc.) of the drawn objects.

Button	Command	See cmd
Cycl	Cyclic mode ON/OFF switch and indicator (Only in Plus mode). If the cyclic mode is ON, the program executes cyclic constructions on triangles. (See OK Geometry Plus documentation for details.)	
Safe	Safe point button ON/OFF switch and indicator. See Section 2.6.	
H B T N X M	Visibility ON/OFF switches and indicators. If the switch \mathbf{H} (hidden) is ON , all hidden objects are displayed as if they were not hidden. If the switch \mathbf{B} (bleach) is ON , bleached objects are displayed as if they were not bleached, i.e. the objects are well visible. If the switch \mathbf{T} (text) is ON , the texts on the construction are displayed. Note that labels of points of objects are always visible, regardless the status of this switch. If the switch \mathbf{N} (transparent) is $\mathbf{O N}$, then transparent objects are displayed in yellow, otherwise they are not visible. If the switch \mathbf{X} is ON , the auxiliary angle lines are displayed. If the switch \mathbf{M} is $\mathbf{O N}$, all markers in the construction are displayed.	
	The rightmost indicator shows the style of the new objects to be created in Sketch Editor. To change the style of new objects, click the indicator and set the styles on the form that appears.	

3.2. Sketch Editor toolbox

The editor's tool bar contains the frequently used commands. If two or more buttons are shown together on the table below, use the right button to select among them.

Button				Command	See cmd
				Restyle objects. Changes the style (i.e. colour, width or size, shape) of displayed objects. Clicking this button brings up the form for setting styles; then click one by one the objects to be restyled.	0
■				Manage the visibility status of objects. If activated, the hidden objects are displayed in red. A click on an object changes its status from hidden to visible and vice-versa.	0
x				Delete objects.	0
百	*	*	*	Scenes. The Scenes command is used to declare or manage the scenes of a construction. The scenes share a common (ground) construction, however for each scene it is possible to declare independently the emphasis, bleach, and transparency status of particular objects. Clicking the Scene button brings up a form that allows the setting of scenes on the current (ground) construction.	
				Toggle emphasize status. Toggles the emphasis status of objects on the ground construction.	
				Toggle bleach status. Toggles the bleach status of objects on the ground construction.	
				Toggle transparency status. Toggles the transparency status of objects on the ground construction.	
				Label a point.	0
				Auto label indicated points. Labels a point with the letter that is on displayed on the button. If the point is already labelled the label is deleted. To set the label on the button Press the Alt+S key.	0
- •*		-1/2		Point. Declares a free point, a free point on an object or an intersection point (depending on the position of the point).	0
				Intersection of two objects. Declares a point as an intersection of two objects.	0
				Midpoint of segments, centre of circles. Declares a point as an intersection of two objects.	
/ \%				Line through 2 points.	0

		Markers are simple marks, with an optional information in a balloon. Markers are not geometric object but in many respects they behave as labelled points. Use the Anchor command to change the position or the text wrt. its reference point.

Some examples of geometric constructions are described in detail in Section 5. All commands are explained in detail in Chapter3.

4. Description of the menu commands

4.1. Sketch Editor: menu organisation

Action commands	Commands for manipulating geometric objects: drag points or parameters, label vertices, hide and delete objects, undo commands, zooming.
Point commands	Commands for placing and constructing points and sets of points.
Line commands	Commands for constructing lines, line segments, and polylines. Note that OK Geometry does not explicitly use rays and vectors.
Circle commands	Commands for constructing circles, circular arcs, and conics.
Number commands	Commands for numeric operations: measure geometric quantities, declare numeric parameters, calculate expressions, compose conditions.
Transformation commands	Commands for defining transformations and commands for applying transformations to objects. A transformation is treated as an explicit object. Once it is defined it can be applied later to various objects.
Advanced	
commands	Commands for complex operations: construct frequently used shapes, create a locus of point, checking conditions, implicit contstructions, optimisation based constructions.
(Special commands)	Commands from this group are available only in Plus mode. The group comprises a range of commands related to triangle geometry.

4.2. Action commands

Command	Purpose	Comments
1. New project	Clear the current project and the current construction.	
New construction	Clear the current construction.	Note. The project (i.e. all icons) remains unchanged.

Drag point/parameter	Drag free points Dynamically change the value of a parameter	Only free (non-constructed) points can be dragged. Note. A long (continuous) click on a free point automatically call the dragging command. It is possible to 'drag' numeric parameters that were declared as numbers (and not as expressions or as measurements). To change the value of a parameter, activate the drag command and then click a numeric parameter. In the form that appears set the minimal, maximal value of the parameter as well as the incremental step and click Apply interval. Change the value of the parameter using the slider.
Hide	Hide objects	Click the object you want to hide. Hidden objects are taken into account in the construction, but they are not visible and they are not observed. To unhide objects, use the command Action/Show hiddenhidden. Note that it is not possible to hide parameters and transformations.
Show hidden	Show and hide objects	if active, all objects (displayed and hidden) are shown. The hidden ones coloured red. Clicking objects changes their status from hidden to displayed and vice versa.
Delete	Delete an object together with all objects that depend on it	
Redefine object	Redefine an object and modify accordingly the depending objects.	Pick the object to be redefined. Then define a new object in place of the redefined one. Example. Suppose you draw a line $A B$. After several construction steps involving the line $A B$ you find out that $A C$ should be used instead of $A B$. To correct the situation redefine the line: - Select the command Redefine object - Click the line AB. The line turns blue and dotted. - Select the command Line 2pts - Click the points A and C. The situation is corrected.

Visually align 2 points	Visually align two points horizontally or vertically.	The command aligns two selected points horizontally or vertically, whichever is closer. The perfect alignment is visible only in exact (nonperturbated) view and in exported/printed images. The command causes a switching to exact view.
Labels/Auto label	Auto label selected points Unlabel points	The point you click on is labelled with the first available label (as shown in the editor's toolbar). If the selected point is already labelled, then the label is deleted. To change the starting label Press the Alt-S or use the command Actions/Labels/Label vertex.
Labels/Label vertex	Label selected points with specified labels	Click the point you want to label. Then write the desired label of the point. The label should comply with the format of labels (see General guidelines).
Labels/Clear label	Delete the label of selected points.	Click the point to be unlabelled.
Labels/ Anchor label/angle/text	Change the position of label and text wrt. its reference point Change an angle with one with the same baselines Change congruence mark Change arrows on a segment Change the fill state of an area	The Anchor button can be pressed repeatedly (the same effect is obtained by scrolling the mouse wheel). Anchor changes the position of the label of a labelled point. Note that labels can be also 'dragged' by a continuous click. Anchor changes the selection of the angle between intersecting lines (there are 8 choices). Anchor changes the size and direction of arrow on an arrowed segment. Anchor changes the position of a text wrt. its reference point. Anchor changes the fill state of a region (defined by a polyline or circle.
Labels/Set next label	Set new label for auto-labelling	The command initiates the starting label for the command Labels/Auto label. Alternatively, you can use the Alt+S key.
Labels/Label all	Auto label all displayed points	All displayed unlabelled points are labelled in the same order as they were defined with the first available label.

$\left.\begin{array}{|l|l|l|}\hline \text { Labels/Clear all lalbels } & \text { Clear all labels } & \begin{array}{l}\text { The labels of all points are deleted. }\end{array} \\ \hline \text { Mark/Mark angle } & \text { Mark an angle } & \begin{array}{l}\text { To mark an angle, select: 1. a point on the ray; 2. } \\ \text { the vertex of the angle; 3. a point on the other ray. } \\ \text { Alternatively, select: 1. one of the baselines; 2. the } \\ \text { other baseline of the angle. } \\ \text { A positively oriented angle is marked. } \\ \text { Note. Use the Anchor command (or scroll the } \\ \text { mouse wheel) to mark other angles with the same } \\ \text { baselines. } \\ \text { Note. The radius and the type of the arc denoting } \\ \text { the angle are set automatically. To modify the } \\ \text { radius and the type of angle mark, right click the } \\ \text { blue dot or use the command } \\ \text { Configuration/General options/Sketch. } \\ \text { Note. The angle marks can be limited to angles less } \\ \text { than 90, 180 or 360 degrees. To set this right click } \\ \text { the blue dot or use the command } \\ \text { Configuration/General options/Sketch. }\end{array} \\ \hline \text { Mark/Mark arrow } & & \begin{array}{ll}\text { Mark one or two } \\ \text { arrows on a line } \\ \text { segment }\end{array} \\ \begin{array}{ll}\text { Apply the command repeatedly (or scroll the mouse } \\ \text { wheel) for various alternatives of placing arrows. } \\ \text { Adding arrows affects a line segment only visually, } \\ \text { not functionally (i.e. arrowed segment does not } \\ \text { represent a vector). }\end{array} \\ \text { The command changes the fill state of a polygon or } \\ \text { circle. The colour of the filled interior is determined } \\ \text { by the colour of the bordering polyline. } \\ \text { Note. There are several ways of hatching (filling) } \\ \text { the area. To select the type and density of hatch, } \\ \text { right click the blue dot or use the command } \\ \text { Configuration/General options/Sketch. } \\ \text { Note. Polylines need not to be closed in order to be } \\ \text { (area) filled. } \\ \text { Note. You can also use the Anchor command to } \\ \text { mark/unmark the area of a polygon. }\end{array}\right\}$

Mark/Mark congruence	Mark a line segment or angle with a congruence sign	The command places a congruence sign on a line segment or an angle. Apply repeatedly (or scroll the mouse wheel) to select among different congruence marks. Note. You can also use the Anchor command to change the type of congruence sign.
Mark/Marker	Place a marker with a ballooned comment	Markers are encircled numbers 1-10 or predefined symbols like !, ?, * optional comments in balloons. Note. You can also use the Anchor command to vary the position of the marker wrt. its reference point.
Mark/Detour point	Make an object to visually avoid a given point	The detour visually emphasises the fact that a point does not lay by definition on an object. Detour can be useful when presenting hypothetical situations ("Assume that the line does not pass through A ...") or facts to be yet proved ("We do not know yet if the line passes through A, we need to prove this."). In order to detour an object away from a point: 1. pick the object; 2. pick the point to be avoided. Note. You can use the Alt command to change the side of the detour. Note. The radius of the detour can be set in Configuration/General options/Sketch.

$\left.\begin{array}{|l|l|l|}\hline \text { Mark/Detour segment } & \begin{array}{l}\text { Make an object } \\ \text { visually avoid a } \\ \text { given point along } \\ \text { a segment }\end{array} & \begin{array}{l}\text { The detour only visually modifies a displayed line or } \\ \text { circle along a segment. This command serves the } \\ \text { same function as Detour point, only the } \\ \text { presentation is a bit different. }\end{array} \\ \text { Detour can be useful when presenting hypothetical } \\ \text { situations ""Assume that the line does not pass } \\ \text { through A..") or facts to be yet proved ("We do not } \\ \text { know yet if the line passes through A, we need to } \\ \text { prove this."). }\end{array}\right\}$

Background/Clear background	Clear the background	
Scenes...	Manage the scenes of the current construction	A construction can be associated to up to 10 scenes. Scenes share the same construction, they only differ in the way certain objects are displayed. For each scene it is possible to define three visibility attributes for a each object: emphasis, bleach, and transparency. The default scene of a construction is called the ground scene. Scenes can be displayed in the Project mode with big icons ($\boldsymbol{\text { - }}$). Scenes can be reviewed also with Commands/Construction steps command on the main menu. Otherwise only the ground scene is displayed. The command brings up a self-explaining form, with which emphasise/bleach/transparency attributes of objects can be defined for each scene of the current construction. See the section Presenting the work in OK Geometry Basic reference.
Emphasise/Toggle bleach	Toggle the bleach status of objects	A bleached object is less visible (fainted). Note. The bleaching level can be set with Alt+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise\|All bleach	Bleach all objects	A bleached object is less visible (fainted). Note. The bleaching level can be set with Alt+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Unmark all bleach	Un-bleach all objects	A bleached object is less visible (fainted). Note. The bleaching level can be set with Alt+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.

Emphasise/Toggle emphasis	Toggle the emphasis status of object	An emphasised object highlighted in a controlled way. Note. The emphasis level can be set with Shift+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Unmark all emphasis	Clear emphasis attribute of objects	An emphasised object highlighted in a controlled way. Note. The emphasis level can be set with Shift+Mouse-wheel or with the occasionally shown slider. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Toggle transparent	Toggle the transparency status of object	A transparent object is not visible, but is taken into account in the construction and also observation. The Sketch Editor shown transparent objects either coloured yellow or transparent. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Unmark all transparent	Declare all objects as nontransparent	A transparent object is not visible, but is taken into account in the construction and also observation. The Sketch Editor shown transparent objects either coloured yellow or transparent. Note. This command affects only the ground scene. Use the Scenes... command to manage other scenes of the construction.
Emphasise/Make everything transparent	Declare all objects as transparent	A transparent object is considered in observation but is not visible. This feature is used when a construction is presented in several scenes. By default, transparent objects are displayed in yellow and are not shown in icons. Note. The command affects only the ground scene. Use Scenes... command to modify other scenes of the construction.
Emphasise/Use current attributes of object in all scenes	Copy the current visibility attributes of an object to all scenes	With this command we copy visibility attributes (emphasis, bleach, transparency) of an object from the ground scene to all scenes.

Restyle objects	Set the visual appearance of picked objects.	In the form that appears select the width, colour, and shape of line/point. It is possible to change only some attributes and leave others unchanged. In the form set the appearance parameters; then click the objects you want to apply the appearance parameters. The More command allows efficient ways of simultaneously restyle several objects. It is possible to restyle at once all objects of a given colour, or all objects of a given type and pattern, etc.
Undo command	Undo the last command	The command can be repeated several times.
Redo command	Undo the last undo command	The command can be repeated several times.
Zoom/Zoom in [Ctrl+Plus]	Zoom in with respect to the centre of the displayed area	Note. To achieve a similar effect, use Ctrl+Mousewheel.
Zoom/Zoom out [Ctrl+Minus]	Zoom out with respect to the centre of the displayed area	Note. To achieve a similar effect, use Ctrl+Mousewheel.
Zoom/Pan view	Drag the view area to the desired position	Note. To achieve a similar effect use a long (continuous) click on an empty space in the construction.
Zoom/Zoom view	Mark the region to be zoomed-in	Define (by dragging) the rectangle, which becomes the new view area.
Zoom/Zoom save [Ctrl+End]	Save the current view	The saved view can be accessed by repeatedly pressing the [] button in the Sketch Editor tool box.
Zoom/Fit points/objects [Ctrl+Home]	Zoom to various ways of showing all points/objects	Sets the viewed area so that all visible points are displayed. If repeated, then the viewed area contains in turn: 1. all labelled points; 2. all visible points; 3. all visible objects; 4. the user-saved view area.

4.3. Point commands

Command	Purpose	Comments
Point	Draw a point Draw a point on an object Draw an intersection point	A click on an 'empty' region creates a 'free' point. A click on an object (e.g. a line or a circle) creates a 'free' point that is attached to this object (in the case Safe points is OFF) or to the corresponding base object (in the case Safe points is ON). (See the Safe points command.) A click o the intersection of two objects creates the intersection point. (See also Intersections for the set of all intersections of two objects.)
Point on object	Draw a point that is attached to an object	Click the object (e.g. a line or a circle). The created 'free' point is attached to this object (in the case Safe points is OFF) or to the corresponding base object (in the case Safe points is ON). (See the Safe points command.)
Intersection	Construct a point as an intersection of two objects	Click on two objects, one after the other. The command creates the intersection point that is closest to the clicked position.
PointXY	Note. If one of the object is a conic, the other should be a line.	

Safe points	Toggle the Safe modality of treating line segments and arcs. (See 2.6.)	The status of the Safe mode is shown by the Safe indicator in the upper right part of the display. Clicking the indicator also changes the status of Safe mode. The Safe mode affects intersection and dragging operations. If Safe mode is OFF then intersections and dragging operations work as intuitively expected. If Safe mode is ON then line segments, segments of polylines, and circular arcs are interpreted as base-lines or base-circles. This option is more robust and therefore should be preferred. Example. If a point is created as the intersection of two segments (with Safe intersection ON), then the point is defined as the intersection of the corresponding base-lines. Such intersection point exists even if the two segments (when dragged) do not intersect each other. Example. If a point is linked to a line segment (with Safe intersection $O N$), the point can be dragged along the base-line of the segment.
Midpoint	Construct the midpoint between two points Construct the midpoint of a segment or arc Construct the point at halfway along a polyline Construct midpoint of each segment of a polyline (See 2.9)	Pick two points or a segment, or an arc or a polyline.

Divide ratio	Construct the point along an arc, a segment or a polyline that divides it in length in a given ratio Construct points on a polyline that divide each of its segment in a given ratio (See 2.9)	Pick two points or a segment, or an arc or a polyline. Then enter the desired ratio. The ratio a / b or $a: b$ divides a segment in ratio $a: b$. For example, if the segment $A B$ is divided in a ratio $1: 2$, the point C is created, which lies at $1 / 3$ of the distance from A to B.
Centre of circle	Construct the centre of a circle or circular arc	
Nearest point	Construct the point on a given object that is closest to a given point (See 2.9)	Pick: 1. an object (line, line segment, polyline, arc); 2. a point. The command constructs a point on the object (1) that is closest to the point (2). Note. If the selected object (1) is a polyline, then you can obtain the nearest point on the shown segment, on each segment, or on the entire polyline.
At length	Construct a point on the object at a given arc length (See 2.9)	Select: 1. an object (line segment, polyline, arc); 2. a positive number. The command constructs a point on object (1), so that the arc length from the beginning of the object to the constructed point is equal to (2). Note If the selected object (1) is a polyline, then you can obtain points at a given length on the shown segment, on each segment, or on the entire polyline.
Triangle centres	Construct the 4 classical triangle centres	In the form that appears, select the type of triangle centre. Then, either pick a triangle (as a polyline) or its three vertices.
Harmonic conjugate	Construct the harmonic conjugate of a point with respect to the reference points.	Select: 1. the two reference points; 2. the point to harmonically conjugated wrt. them. Note. If the point to be conjugated is not collinear with the reference points, it is replaced with its projection onto the line through the reference points.

| Vertices | Create the set of
 vertices of a polyline
 Conic points
 Construct the
 characteristic points
 of a conic.
 vertices on it. Use this command to obtain all vertices
 of such polylines. |
| :--- | :--- | :--- |
| | Pick a conic or 5 points on the considered conic. The
 command constructs a set of points; the number and
 the meaning of the constructed points depends on the
 type of the considered conic.
 If the conic is an ellipse then 7 points are constructed:
 the centre, the two focuses and the endpoints of both
 axes.
 If the conic is a hyperbola then 5 points are generated:
 the focuses, the centre and the two intersections of the
 hyperbola with the axis. |
| If the conic is a parabola then 3 points are generated: | |
| the focus, the intersection of the axis with the parabola | |
| and the intersection of the axis with the directrix. | |

Intersections\| Intersections	Construct the set of all intersection points of two objects	Select two objects (circles, lines, arcs, polylines, conic). The command constructs the set of all intersection points of the two objects. Note. If one of the object is a conic, the other one should be a line.
Intersections/ Nearest intersection	Construct the intersection point of two object that is closest to a given point	Select: 1. two objects (circles, lines, arcs, polylines, conic); 2. a point. Note. If one of the object is a conic, the other one should be a line.
Intersections/ Farthest intersection	Construct the intersection point of two object that is furthest away from a given point	Select: 1. two objects (circles, lines, arcs, polylines, conic); 2. a point. Note. If one of the object is a conic, the other one should be a line.
Grids/Uniform divide	Construct a pattern of equally spaced points along an object or between two points (See 2.9)	Select: 1. two points or a line segment, arc, or polyline; 2. the number of segments (not points!) to be generated. If the selected object (1) is a polyline, then the number of segments refers to either along the entire the polyline, along each segment of a polyline or along just one segment of the polyline.
Grids/Rectangular grid	Construct a grid of points in the form of a parallelogram	Select: 1. the lower left corner of the grid; 2. the lower right corner of the grid; the upper left corner of the grid; 4. the number of points in the horizontal direction; 5. the number of points in the vertical direction.

Grids/Circular grid	Construct a grid of points in the form of a circular segment	Enter: 1. the centre of the circle; 2. one corner of the grid; 3. the opposite corner of the grid; 4. the number of points in radial direction; 5. the number of point in angular direction.

4.4. Line commands

$\left.\left.\left.\begin{array}{|l|l|l|}\hline \text { Command } & \text { Purpose } & \text { Comments } \\ \hline \text { Line: 2 points } & \begin{array}{l}\text { Construct a line through } \\ \text { two points }\end{array} & \begin{array}{l}\text { Select two points. You can point either to an existing or } \\ \text { nonexisting point - in the later case a new point is } \\ \text { implicitly defined. }\end{array} \\ \hline \begin{array}{l}\text { Line: point + } \\ \text { angle }\end{array} & \begin{array}{l}\text { Construct a line with a } \\ \text { fixed inclination }\end{array} & \begin{array}{l}\text { Construct a line segment } \\ \text { given its endpoints }\end{array} \\ \hline \text { Segment } & \begin{array}{l}\text { Select the two edges of a line segment to be } \\ \text { constructed. You can either point to an existing or non- } \\ \text { existing point - in the later case, a new point is implicitly } \\ \text { defined. }\end{array} \\ \hline \text { segment } & \begin{array}{l}\text { Construct a perpendicular } \\ \text { segment to a line from a } \\ \text { point }\end{array} & \begin{array}{l}\text { Select a point, then a line (or circle). } \\ \text { A perpendicular segment to the line from the given point } \\ \text { is constructed. }\end{array} \\ \hline \text { Construct a polygonal line } & \begin{array}{l}\text { Click sequentially to the vertices of the polygonal line. } \\ \text { given its vertices }\end{array} \\ \text { You can either point to an existing or non-existing points }\end{array}\right\} \begin{array}{l}\text { in the later case, new points are implicitly defined. }\end{array}\right\} \begin{array}{l}\text { To draw another polygonal line, click again the command } \\ \text { Polyline. } \\ \text { To draw a closed polygon, simply end at the starting } \\ \text { vertex. There is no indication whether a polyline is } \\ \text { closed or whether it should be interpreted as a } \\ \text { polygonal region. } \\ \text { Note. The construction tends to avoid self-intersections. } \\ \text { In particular the quadrilaterals are automatically } \\ \text { modified to avoid self-intersections. } \\ \text { Note. If the Safe mode is ON, the displayed segments of } \\ \text { polyline in some situations behave as a lines. }\end{array}\right\}$

Parallel line	Construct a line that is parallel to a given line and passing through a given point	Pick a line and a point or vice versa. Note. To obtain a perpendicular line press the Alt button in editor's toolbar (or scroll the mouse-wheel).
Perpendicular line	Construct a line that is perpendicular to a given line and passing through a given point	Pick a line and a point or vice versa. Note. To obtain a parallel line click the Alt button in editor's toolbar (or scroll the mouse-wheel)..
Bisector	Construct the bisector of a line segment	Pick the endpoints of a segment or pick a line segment.
Angle bisector	Construct the angle bisector See 2.5.	Select two lines. The bisector of the resulting angle is displayed. To obtain the alternative solution click the Alt button in editor's toolbar (or scroll the mouse-wheel). Or, pick three points: 1. a point on a ray; 2. the vertex of the angle; 3 . a point on the second ray.
Line: 2 objects	Construct a line defined by two selected objects in terms of passing through points, being tangent to circles or conics, being parallel or perpendicular to a line, being the radical axis of two circles	Select two objects (points, lines, circles, conics). A line defined by the two objects is drawn. Usually there are two or more alternative solutions. To obtain them click the Alt button in editor's toolbar or scroll the mouse wheel. Note. This command comprises most of the line commands. The resulting line is defined by two objects and the relations 'passing through', 'parallel with', 'tangential to', 'radical axis'. With this command and the mouse wheel you can, for example, construct: a line through 2 points; a line tangent to 2 circles; a line parallel or perpendicular to a given line and touching a given circle; the radical axis of two circles; a line passing through a point and touching a conic.

(2)

4.5. Circle commands

Command	Meaning	Comments
Circle: centre + point	Construct a circle given its centre and a point on its circumference.	Point to: 1. the centre of the circle; 2. a point on the circumference. You can either point to an existing or non-existing point -in the later case, a new point is implicitly defined.
Circle: centre + radius	Construct a circle given its centre and the numerical value of the radius.	Set: 1. the centre of the circle; 2. the numeric value of the radius of the circle (either by writing the value on the information line, by selecting a previously defined parameter, or by clicking a circle).
Compass	Construct a circle given its radius (as the length of a line segment or the radius of another circle) and its centre.	Set: 1. the radius of a circle by pointing to a line segment, to the endpoints of a line segment or to a circle; 2. the centre of the circle to be constructed.
Apollonius		
circle	Given two points, construct the locus of points X with a given ratio of the distances from X to the two given points.	Pick: 1. the first point; 2. a point on the Apollonius circle (to be constructed); 3. the second point. Each point X on the resulting Apollonius circle has the property that the ratio of distance from X to (1) and from X to (3) is equal to the ratio of distance from (2) to (1) and from (2) to (3).

Circle: centre + object	Construct a circle, given its centre and an object (circle, line or point) that touches the circle. See 2.5	Select: 1. the centre of the circle, 2. the object touching the circle. The object can be a circle, a line or a point. Note. Usually there are more alternative solutions. To get them, click the Alt button in editor's toolbar or use the mouse-wheel.
Circle: radius + 2 objects	Construct a circle with a given radius and two objects (circles, lines or points) that touch the circle. See 2.5.	Set: 1. the first touching object; 2. the second touching object; 3. the radius of the circle (either by entering the numerical value or by pointing to a circle). Note. Usually there are more alternative solutions. To get them, click the Alt button in editor's toolbar or use the mouse-wheel.
Circle: central angle + 2 objects	Construct a circle that 'touches' two given objects (circles, lines or points) so that the circle radii to the touch-points form a given angle.	Set: 1. the first touching object; 2. the second touching object; 3 . the angle (in degrees) between the radii to the touch-points. Note. Usually there are more alternative solutions. To get them, click the AIt button in editor's toolbar or use the mouse-wheel.
Circle: 3 objects	Construct a circle defined by three given objects (circles, lines or points) in terms of passing through points or being tangent to circles or lines See 2.5	Pick the three objects (points, lines, circles) that the circle is supposed to touch. Note. Usually there are more alternative solutions. To get them, click the Alt button in editor's toolbar or use the mouse-wheel. With this command you can, for example: draw a circle that touches two lines and passes through a given point; circumscribe a circle to a triangle (point to three vertices); inscribe a circle to a triangle (point to three sides),

		draw a circle that touches three given circles; and so on ...
Arc 3 pts	Construct a circular arc given its endpoints and a point inside the arc	Pick: 1. an endpoint of the arc; 2. a point inside the arc; 3. the other endpoint of the arc.
Arc centre	Construct a circular arc given its centre and two endpoints	Pick: 1. the centre of the arc; 2. the first endpoint of the arc (considering the positive orientation of the arc); 3. the approximate second endpoint of the arc (considering the positive orientation of the arc).
Indicate arc	Construct an arc indicating a circle	Pick: 1. the centre of the arc; 2.the approximate centre of the indicated arc .
Conic 5 points	Draw a conic given 5 points on it.	Pick 5 points on the conic to be constructed. Note. Other constructions of conics are available in menu Advanced/Shapes/Other.

4.6. Number commands

Command	Purpose	Comments
Distance to object	Find the distance from a point to an object (another point, a line, a circle)	Set: 1. the point from which the distance is measured; 2. the object to which the distance is measured (can be a point, a line or a circle); 3. the name of the parameter with the measured value.
Radius of circle	Find the radius of a circle or circular arc	Pick a circle or arc and declare the name of the parameter.

Angle size	Find the size of an angle	First option: 1. pick a point on the angle's ray; 2. pick the angle vertex; 3. pick a point on the other angle's ray; 4. enter the name of the parameter with the size of the angle. Second option: 1. pick a base line of a ray; 2. pick the base line of the other ray; 3 . enter the name of the parameter that will contain the size of the angle between base lines. Note. The angles are always expressed in degrees. Note. The measured size of the angle can be positive or negative, depending on the orientation of the angle. Note. The measured angle between baselines is always smaller or equal to the right angle.
Length, perimeter	Find the perimeter of a circle Find the length of a line segment or circular arc Find the length of a polyline Find the length of a segment of a polyline	Point to a circle, a line segment or a polyline. If you select a polyline you need to specify, whether the length refers to the pointed segment or to the entire polyline. Then enter the name of the parameter with the length/perimeter.
Area	Find the area of a given circle Find the area enclosed in a polyline	Select a circle or a polyline. Then write the name of the parameter with the measured area. Note. The polyline should be closed and without selfintersections, otherwise the resulting area is not valid.
Ratio of segments	Find the ratio of the lengths of two line segments	Either select two existing line segments (they can be part of a polyline) or pick the 4 endpoints of the two line segments. Then write the name of the parameter with the ratio of the lengths of the segments.

Value, Expression	Calculate the numerical value or the value of an arithmetic expression	Note the input field that appears in the information line and the OK button next to it. Enter the value of the parameter and then the name of the parameter. If the entry value of the parameter is a number, then the parameter can be dynamically changed (see the command Action/Drag Parameter). The entry value of the parameter can be as well an arithmetic expression, perhaps containing mathematical functions and previously defined parameters. Such parameters cannot be 'dragged'. To insert the value of a parameter in the expression, just click the parameter in the Transformations \& Parameters section (on the left pane). Note that the names of the parameters are written in brackets. The expressions should follow the usual syntax rules. Expressions can contain mathematical functions (see the list below). For the power sign use either ^ or **. Here are some examples: 2.785 (a numeric parameter that can be 'dragged') $1 /\left(6.3+2,2^{\wedge} 2\right)$ (an arithmetic expression) sqrt(sin(60)+cos(30)) (expression with functions; use degrees) [par1]/(2+[par3]) (an expression with previously defined parameters)
Compose conditions	Compose conditions	There are several commands for defining geometric conditions (e.g. whether three points are collinear), see the command Check property in section 4.8. Sometimes it is necessary to compose previously defined geometric conditions. The only two allowed operations involving conditions are logical conjunction (and) and logical disjunction (or). Conditions are composed in the field that appears on the information line. To insert a previously set condition, just click the condition in the Parameters section. As mentioned, the expression can contain only: conditions, and, or, parentheses.

Triangle expression	Calculate triangle related numerical expression (only in Plus mode)	In the expression the well-known triangle-related parameters can be used, e.g. triangle sides, triangle angles, Brocard angles, Conway parameters, etc. To calculate a triangle related expression: 1. pick the vertices of the triangle (in expression they are refered to as vertices A, B, C) or click a polyline that defines a triange; 2. write an expression in the form that appears; 3. write the name of the created parameter.
Note. Angles are in degrees.		

Here is a list of the functions that can be used in numeric expressions:

ABS (x)	absolute value of x
ACOS (x)	arcus cosines of x (degrees)
ASIN(x)	arcus sinus of x, in degrees
ATAN (y, x)	arcus tangens of y / x, in degrees
ATANG(x)	arcus tangens of x, in degrees
CEIL($x)$	smallest integer that is bigger or equal to x
$\operatorname{COS}(x)$	cosine of x (degrees)
DEG($x)$	express radians in degrees
EXP($x)$	exponent function
FLOOR($x)$	largest integer that is smaller or equal to x
FROUND($x)$	round x to the nearest integer
GCD($x, y)$	greatest common divisor of x and y

HYPOT(x, y)	length of hypotenuse in right triangle with sides x and y
IFIX (x)	integer part of x
LCM (x, y)	least common multiple of x and y
LOG (x)	natural logarithm of x
MAX (x, y)	the biggest of x and y
MIN (x, y)	the smallest of x and y
PI	the constant pi
RAD (x)	x degrees expressed in radians
RAND (x, y)	a random number between x and y
REM (x, y)	remainder of x when divided by y
RND	random number between 0 and 1
SIGN (x)	sign of x, can be $-1,0$ or 1
SIN (x)	sine of x (degrees)
SQRT (x)	square root of x
TAN (x)	tangens of x (degrees)

4.7. Transformations commands

Transformations in OK Geometry are treated as explicit objects. You can apply a transformation immediately after its definition or later.

Suppose you want to define a translation that moves a given point A to a given point B. After you select the command Transformation/Translation you are asked to pick the point A and the point B. A transformation called Tran_AB is created and can be immediately applied to an object. You can refer to and apply the transformation later using the command Transform/Transform object.The transformation is 'visible' in Transformation \& Parameters list.

Command	Purpose	Comments
Translation	Define a translation and apply the translation or its inverse Define a glide translation and apply the translation or its inverse	First select the a point (origin) and the point where you want the origin to be translated. Note. Press the Alt button at this point if you want to declare a glide translation. Then pick the object you want to apply to the (glide) translation. Note. Press the Alt button at this point to apply the inverse transformation.
Reflection	Define a reflection symmetry (wrt. a line) and apply it	Pick a line or two points on the line of reflection. Then pick the object to be reflected wrt. the line.
Rotation symmetry	Define a rotation symmetry and apply it	Pick the centre of rotation symmetry. Then pick the object to be transformed.
Rotation	Declare a rotation around a given point and apply it or its inverse to an object	Select: 1. the centre of rotation; 2 . the angle of rotation; 3 . the object to be transformed. Note. Press the Alt button at this point to apply the inverse transformation. Note. The rotation angle is oriented and should be given in degrees. It can be an arithmetic expression containing previously defined parameters.
Dilatation	Define a dilatation and apply it or its inverse to an object	Select: 1. the centre of dilatation; 2 . the dilatation factor; 3 . the object to be transformed. Note. Press the Alt button at this point to apply the inverse transformation. Note. The dilatation factor can be an arithmetic expression containing previously defined parameters.

Similarity	Declare a similarity transformation and apply the transformation or its inverse to an object Declare a glide similarity transformation and apply the transformation or its inverse to an object	Select: 1. the first origin point; 2. the image of first origin point; 3. the second origin point; 4. the image of the second origin point. Note. Press the Alt button at this point if you want to declare a glide similarity. Then pick the object you want to apply to the (glide) similarity. Note. Press the Alt button at this point to apply the inverse transformation.
Projectivity	Declare a projectivity that maps four given points to four given points	Select an origin point and then its image point. Repeat this for the remaining three origin and image points.
Then pick the object you want to apply to the projectivity. Note. Press the Alt button at this point to apply the inverse transformation.		
Inversion wrt. circle	Invert a point, line or circle wrt. a circle	Pick: 1. a circle; 2. the object (point, line, circle). The inversion of the object wrt. the selected circle is constructed.
Compose transformations	Define a new transformation as the composition of two previously defined transformations	Define a new transformation as the inverse of a previously defined transformation
Transform object transformation transformation or its inverse to an object	Selected a transformation from the list of previously defined transformations. Press OK in the information line (upper right of the display) to confirm the selection. Then select the object to be transformed. Note. Press the Alt button at this point to apply the inverse transformation.	

| Other / Multiply object by grid | Position in various ways copies of a given object along a grid of points | This command places copies of a given object O along a the variable point S of a given grid, one copy of O for each point of the grid. The way of placing copies of the object O depends on two points related to it: the guide point G and the reference point R.
 For each point S on the grid a copy of the transformed object O is generated under the composition of:
 an optional dilatation with centre G and factor \|GS|/|GR|;
 an optional rotation that carries the line RG to line RS;
 an optional translation that carries G to S .
 To execute the command select: 1 . the object 0 to position along the grid; 2. the guide point G; 3 . the reference R; 4. any grid-point (setPoint) on the grid. |
| :---: | :---: | :---: |
| Multiply along polyline | Position geometrically similar copies of a given object along each segment of a polyline | This command positions similarity copies of an object along the sides of a polyline. The similarity transformation brings two given reference points of the object to the endpoints of respective sides of the polyline.
 Select: 1. the object to position along the grid; 2. the 1st reference point of the object (a point); 3 . the 2 nd reference point of the object (a point); 4. the polyline along which to position the object. |
| Repeat transformation | Apply recursively a number of times a transformation to an object | Select: 1. the transformation; 2. the number of repetitions; 3 . the object to which to apply to recursively the transformation.
 A sequence of object will appear, each object is transformed from the previous one with the given transformation. |

4.8. Advanced commands

Command	Purpose	Comments
Shapes	Construction of various commonly used shapes (isosceles triangle, rectangle, regular n-gon and many others)	This command allows you to easily construct frequently used shapes. In the form that appears, first select the type of shape (triangle, quadrilateral, other) and then the specific shape. Then follow the instructions on the information line. Note. The input vertices of the shape should follow a positive orientation (for some shapes this is irrelevant). Not all vertices of the constructed shape are displayed. Make them accessible with the command Point/Vertices. By default the vertices of the constructed shapes are not labelled. You can label them with the commands Action/Labels/Auto label or Action/Labels/Label all.
Check property	A collection of tests on geometric objects (collinearity of points, congruence of triangles and many others).	This collection of commands contains checks for a variety of geometric properties. In the form that appears when the command is clicked, first select the type of property you want to check (position, equivalence, shape). And select a property from the displayed list. Then follow the instructions in the information line. Besides the obvious use, these checks are important for the command Advanced/Implicit construction, which tries to modify a given construction so that a previously defined check is fulfilled.
Locus	Create the locus of a constructed point as another point moves along an object.	Select: 1. a constructed point to be traced (the point should depend on the point (2); 2. the point to be moved along a path; 3. the object (circle, arc, line, line segment, polyline) along which (2) moves. The resulting object is a curve, which represents the trail of (1) as (2) moves along (3). Note. It is not required that the point (2) lies on the object (3). Note. If the resulting locus appears to be (part of) an underlying common object (line, circle or conic), that object can be created too.
Implicit locus	Obtain a hint for the locus of points for which a	The command attempts to suggest a possible locus of a constructed point in the construction, so that a constructionrelated parameter has a desired value. Only points, lines, circles, and conics are eventually suggested as possible locus.

	construction- related parameter is fixed	Note. At best, the command provides just hint for the locus. The hint should always be critically evaluated. Note. This command reduces the reliability of observational results.
Implicit construction	Find the position of a point so that a condition is satisfied Obtain a hint for the locus of points for which a given condition is satisfied Modify up to three objects in the construction so that condition is satisfied	There are two versions for this command. In both cases the program attempts to move modify one or more objects in a construction so that a given condition is fulfilled, i.e. so that a checked property hold true. In the simple version of the command the program attempts to find the position of a given free point so that a target (previously defined) condition is fulfilled. The given point a point can be attached to a line or circle or completely free. In case that several points on the plane fulfil the given condition, OK Geometry occasionally suggests a hint for the locus of such points. Use the simple version of the command as follows: Create the initial construction, which satisfies all conditions except one (the target condition). We inquire where to position a variable free point so that the target condition is satisfied. Using the command Advanced/Check property find whether the target condition is satisfied (e.g. whether two objects coincide, whether three points are collinear). At this point, obviously, the target condition is not satisfied. Call the command Advanced/Implicit construction. A form (for simple version of the command) appears. Choose one of the three options for implicit construction. The first two options deal with situations where we expect the solution in form of a single point (either on an object or on the plane). The last options deals with situations where we expect the solution in form of a locus of points (a line, a circle, a conic). After you fill the form, click OK and pick the variable point. The variable point attains a new position. Check whether the desired position of the moved point has been found, i.e. whether the target condition is true. The advanced version of this command allows the modification of up to three objects (points, lines, circles) or numeric parameters. Furthermore you can: Define a restriction for each object. If the positions of the objects to be modified are almost correct, then select 'local optimisation'. Note. Implicit construction reduces the reliability of

		observational results.
Optimisation	Modify one or more objects in a construction so that the value of a parameter is optimised	Optimisation procedure is similar to implicit construction. Instead of a condition to be fulfilled, there is a numerical parameter to me optimised. The scalar value is optimised by automatically changing the position of one or more objects. Make the initial construction. Compute (as a numerical parameter) the value to be optimised. Proceed as in the case of Advanced/Implicit objects. Note. Optimisation procedures reduce the reliability of observational results.
Make macro	Define a sequence of commands as a new command Save macros to be used in other constructions.	First we have to carefully make a construction, in which some (dependent) objects are constructed from some initial objects. Then use the command Advanced/Make macro and proceed as follows: Fill out the form that describes the macro. In particular, choose the types of the input object(s) and the type of the output object(s). Next to the selected types of input objects you can write comments on how to select objects. Press the Continue button. Select the input and the output objects in the appropriate order. When the macro is successfully created you can save it to a file (to use it in other occasions). In any case you can use the generated macro in the current session with the command Advanced/Execute macro.
Get macro	Execute macro Read one or more macros saved in from previous sessions.	Execute a macro
Select a macro and execute it as any other command.		

5. Examples

The examples in this section illustrate the use of some of the commands of OK Geometry Sketch Editor. The main purpose of the Sketch Editor is to allow fast and effective construction of geometric configurations, which are then analysed in OK Geometry. The analysis and the observed properties are the focus of the work.

Usually there are many ways to complete a construction task in OK Geometry Sketch Editor. In the following examples we show only one way - to illustrate a command or a construction strategy.

5.1. Midpoints in a quadrilateral

This example demonstrates how certain commands are applied in different ways to a polyline.

Task:	In an arbitrary quadrilateral $A B C D$ mark the midpoints E,F,G,H of the four sides. Which interesting properties of the obtained configuration can you spot?	
File:	OkEditEx_1.p	
Strategy:	Draw the quadrilateral as a shape. Draw the midpoints using the Midp	nt command
Procedure/S tep	Sketch Editor command	Comment
1	Shapes\|Quadrilateral	Pick 4 vertices. You obtain an unlabelled quadrilateral.
2	Point\|Midpoint	Point to the quadrilateral (at one of the edges). In the form that appears select 'On each segment' to obtain all the midpoints at once.

$\mathbf{3}$	Action\|Labels/Label all	Label all created points. The order of the labels follows the order of construction of the points.
Suggestions for the analysis	According to the construction, we are interested in properties that are invariant under the cyclic permutation of vertices: ABCD EFGH. (See OkEditEx1a.pro for an elaboration.) What can you say about the shape of the quadrilateral EFGH? How is its area related to the area of ABCD? (See OkEditEx1b.pro for an elaboration.)	

5.2. Inscribe a circle

This example demonstrates how complex construction commands help to analyse a construction.

Task:	A circle is inscribed into another circle. Construct a circle that touches the two circles and the line through the centres of the two given circles.	
File:	OkEditEx_2.p	
Strategy:	Draw the configuration using complex other circles/lines). A study of the construction will reveal Euclidean construction tools.	commands (e.g. construct a circle tangent to three how to work out the construction using only
Procedure /Step	Sketch Editor command	Comment
1	Circle \| CircleCentre+point	Draw the outmost circle with centre S. (See the labels on the figure above. Until Step 6 do not bother about the labels on your display.)
2	Circle \| CircleCentre+object	Construct a circle tangent (from inside) to the outmost circle.

		Pick the centre (T). Pick the outer circle. Click on Alt button until the shown new circle is the desired one.			
3	Circle\|Line 2 points	Construct the line through the points S and T.			
4	Circle ${ }^{\text {Circle }} 3$ objects	Construct the circle tangent to the three drawn objects: Pick the outer circle, the inner circle, and the drawn line (any order of picking them will do). Click repeatedly the Alt key until the new circle is the desired one.			
5	Point \|Centre of circle Point	Pick the newly constructed circle to obtain its centre. Point to the position of the relevant points.			
6	Action\|Labels	Clear all labels Action\|Labels	Label vertex Action\|Labels	Label auto	After you set the label A skip to Label auto.Then pick the points in the desired order to obtain labels A, B, C, D. Work in a similar way for labels $\mathrm{S}, \mathrm{T}, \mathrm{U}$.
7	Action\|Restyle objects	Select first the desired colour, width and line style; then select the line or circle to be modified. Repeat this step as desired.			
Suggestion s for the analysis	- How would one do the construction properties, but we want to know the position of D right above the point C - To obtain the position of C use the the segment CD, click the \square ? \circ butt - Perhaps you come to the beautiful 3 squares that determine the red dott determines the blue dotted line and	using Euclidean tools? The analysis reveals lots of e position of the point C on line $A B$ and the C. \square button and select the point C . To inqure on ton and select point C and D. 3 -square constuction shown below. (First draw the ted line and the point C . Then draw the square that the point D. See OkEditEx_2a.p.)			

How to prove the ratios that you (hopefully) find among the properties? A possible way to
find out the relations between the radii of the three circles and the distance AC is by
considering right triangles related to the mentioned quantities. In fact, using Pytagoras
theorem on triangles TCD and SCD and a bit of algebra you can prove the correctness of
the construction.

5.3. Isosceles triangles on top of a triangle

This example demonstrates how to define and apply a transformation.

Task:	On each side of a given triangle ABC draw three similar isosceles triangles. Study the obtained configuration.	
File:		

Strategy:	Draw a triangle $A B C$. On one of the sides place an isosceles triangle. Using similitude transformations construct copies of the isosceles triangles on the other two sides.	
Procedure /Step	Sketch Editor command \quad Comment	
1	Shape \|Triangle Draw a triangle. Label all the vertices, they are labelled as A, B, C. Action\|Labels	Label all
2	Shape\|Isosceles On the side $B C$ draw an isosceles triangle: Point to C, to B and then approximately where you want D to be. Action \| Labels Label all	
3	Transform\|Similarity First we shall define a similarity that maps $B C$ to CA. We apply this similarity immediately to the isosceles triangle and to the point D. Select the point B, then C (the desired image of B). Select the point C , then A (the desired image of C). Name the obtained transformation as Simil_BC_CA. Since we shall immediately apply it, click Transform. Immediately apply the transformation to the isosceles triangle (point on it). Set the new vertex as point E . Analogously construct a triangle on the side AB .	
4	Action \mid Auto label Label properly the vertices. Action \mid Colours and styles Apply the desired attributes to lines and points.	
Suggestion s for the analysis	According to the construction, we are interested in properties that are invariant under the cyclic permutation of vertices: ABC DEF. The configuration has some very interesting properties. Find them with the command Observe.	

5.4. A cyclic tangential quadrilateral

The following is an example of an implicit construction of a point.

Task:	Construct a quadrilateral that is both cyclic (i.e. its vertices lay on a circle) and tangential (i.e. all sides are tangent to a circle). Study the obtained quadrilateral. Given the inscribed circle and the points $\mathrm{E}, \mathrm{F}, \mathrm{G}$, how to construct the point H , so that the resulting quadrilateral $A B C D$ is cyclic?		
File:	OkEditEx_4.p		
Strategy:	Starting from an (in)circle we pick 4 poin circles at these points. The resulting qua cyclic. In fact, we draw the (out)circle Using the implicit construction comm so that the point D lays on the outer circ An analysis of the resulting configurat construct the point H given the (in)cir	nts, $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ on it and draw the tangent lines to the adrilateral $A B C D$ is tangential but, in general, not rough A, B, C and observe that D does not lay on it. nd of OK Geometry we position H on the (in)circle cle. $A B C D$ is then be cyclic and tangential. (hopefully) provides a hypothesis how to e and the points $\mathrm{E}, \mathrm{F}, \mathrm{G}$.	
Procedure/ Step	Sketch Editor command	Comment	
1	Circle\|Centre+point Point	Point	Draw the incircle. Position the points E,F,G,H on it.
2	Line\|Line 2objects	To draw the tangent line to the incircle at E pick the point E and the incircle. In the same way construct the tangents to the incircle at F,G, and H.	
3	Point \mid Point Action\|Hide Line\|Polyline	Construct the intersection points A, B, C, D. Hide the four tangent lines. Draw the quadrilateral $A B C D$.	

4	Circle \|Circle 3obj	Pick the points A, B, C. The outcircle through A, B, and C appears.		
5	Advanced\|Check property	Position	PointOnObject	Pick the point D and then the outer circle. Name the resulting condition 'positionD'. The condition positionD appears (as False) in the list of parameters. (In the next step we instruct OK Geometry to move the point H along the incircle so that the condition positionD becomes True.)
6	Advanced\|Implicit construction	In the form that appears check the option Move a point along some object, since we want to position H on the 'incircle' (object) so that the condition positionD (that D lays on the 'outcircle') will be met. Leave the other options as suggested. Click the OK button in the form. Pick the point to be modified, i.e. the point H. Finally, pick the constraint object, i.e. the 'incircle', along which H will be positioned. (Now H and D should appear in a desired position.)		
Suggestion s for the analysis	We are interested in properties that are invariant under the cyclic permutation of vertices: ABCD EFGH. The analysis will gain additional evidence an additional cyclic permutation $A B$ CD FH is specified. The cyclic tangential quadrilaterals have many indeed interesting properties. Study them with the Observe command. How to construct the point H in Euclidean steps? Note that the incircle and the points $\mathrm{S}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{B}$ and C can be considered as given. Among the properties listed by OK Geometry we look for some property that relates the given objects with the point H . One of such relations is shown on Figure 7. It is easy to show that the two emphasized triangles are similar isosceles triangles. Making use of this fact the construction of the point H is rather obvious. Note. The presence of implicitly constructed objects reduces the reliability of observational results.			

Figure 7

5.5. The angular size of a line segment

The following trivial example demonstrates the implicit construction of the locus of points.

Task:	Given a line segment AB, we want to find instances of points P, from which the segment AB is visible at an angle with a fixed size. In other words, we look for the locus of points for P where the angle APB is constant.	

File:	OkEditEx_5.p	
Strategy:	Given the segment $A B$ we pick an arbitrary point P and measure the angle APB. Then we ask OK Geometry to find some instances of positions of point P in which the angle APB has the desired value.	
Procedure /Step	Sketch Editor command	Comment
1	Point Action\|Label vertex Number\|Angle	Draw the vertices A, B and the point P. Then measure the angle APB. Name the measured value as AngleAPB.
2	Advanced\|Implicit locus	Fill the form as shown on the left: Since we are looking for the locus for P where a parameter (i.e. AngleAPB) is fixed, fill the form as shown on the left and click OK. After the form is filled pick the point P (to variable object). OK Geometry gives a hint that the sought locus for P is a circle (see Figure 8). The hint is not the correct solution, but there is some salt in it.
	Important note. As is evident from this trivial example, OK Geometry possibly provides only a hint for the sought locus of points. In our example the correct locus is the arc BPA (since it refers to the size of the oriented angle), and not the whole circle. Depending on the situation it can happen that OK Geometry misses the locus, provides an 'extended' locus or even gives a deceiving hint. It is just a hint that requires additional checks.	

Figure 8

5.6. The pedal points

The following example shows the use of implicit construction command.

| Task: | The orthogonal projections of a |
| :--- | :--- | :--- |
| point P onto the baselines of the | |
| three sides of a triangle ABC are | |
| called the pedal points of P wrt. the | |
| triangle ABC . The pedal points are | |
| the vertices of the pedal triangle of | |
| the point P wrt. the triangle ABC. | |
| Is there a point P, for which the | |
| pedal points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are collinear? | |
| When is this the case? | |

	With the command Implicit objects we find several instances of points P that satisfy the condition that its pedal points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are collinear.	
Procedure/ Step	Sketch Editor command ${ }^{\text {a }}$ Comment	
1	Point \mid Point Draw the vertices A, B, C, and the point P. Line \mid Line 2points Line \mid Polyline Construct the lines $A B, B C, C A$. For reference draw the triangle $A B C$ as a polyline. Note: We need the lines since we project P to the base lines of the triangle's sides.	
2	Line\|Perpendicular segment Action \|Label	Label vertex\quadDraw perpendicular segments connecting P to the baselines of the triangle $A B C$. Label the points $D, E, F . F o r$ each base line (!) find the projection of P to the line as nearest line to P.
3	Advanced\|Check property \mid Position \mid CollinearP\quadCheck whether D, E, and F are collinear. Name the condition as CollinearDEF.	
4	Advanced\|Implicit construction Since we are looking for the locus of points of P that satisfy a given condition (i.e. CollinearDEF), fill the form as shown of the left. Then click OK, and pick the point P (to be moved around). (The sought locus appears, see Figure 8.)	
	Important note. OK Geometry possibly provides only a hint for the sought locus of points. In our example the found locus is indeed correct (by Simson's theorem). However, depending on the situation, it can happen that OK Geometry misses the locus, provides an 'extended' locus or even gives a deceiving hint. The result this always requires additional checks.	
Suggestion s for the analysis	Given the obtained hint, it is easy to provide a more reliable check that the points on the suggested locus satisfy the considered condition. You can use OK Geometry to prove the theorem (start with a new construction where P lies on the circumcircle of $A B C$ and analyse the situation. The proof is not trivial. Try also to investigate, where should P lie in order that the pedal triangle has a fixed area (proceed as in example 5.5).	

Figure 9

5.7. The Fermat point of a triangle

This example shows how to generate a hypothesis for the solution of an optimisation tasks.

Task:	For a given triangle ABC find the point D for which the sum of the distances from the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ to D is minimal.
File:	OkEditEx_7.p
Strategy:	Given a triangle $A B C$ and an arbitrary point D we measure the lengths of $A D, B D$, and $C D$. Then we calculate the sum of these distances. We let OK Geometry to move the point D around to a position where the sum of distances to the vertices is minimal.

Procedure /Step	Sketch Editor command	Comment
1	Shape\|Triangle Action\|Label all Point[Point	Draw a triangle. Label the vertices A, B, C. Draw and arbitrary point D.
2	Number\|Distance to object	Measure the distance from D to A. Point to the two points. Name the parameter DistanceAD. In the same way measure DistanceBD and DistanceCD. In the next step we shall calculate the sum of the three measured distances.
3	Number\|Value, expr	Click first on DistanceAD. In the information row appears [DistanceAD]. Then click the + key on the keyboard. Click on the DistanceBD. Repeat this also for DistanceCD In the information row appears [DistanceAD] + [DistanceBD] +[DistanceCD]. Click the red coloured OK to enter this expression. Name the result Sum_AD_BD_CD. In the next step we let OK Geometry move around the point D so that Sum_AD_BD_CD attains a minimal value.
	Advanced\|Optimisation	In the form that appears:
4		Select minimum (Optimise for), Uncheck the Constraints option, since D is not restricted to an object (line, circle, conic). Prefer the Fast method. In case the results are not as expected try with the option unchecked. Select the parameter to be optimised, i.e. Sum_AD_BD_CD. Then click OK in the information line. Pick the point to be moved around (D). The point D is appears on new position (Figure 10). Note, if one of the angles is bigger than 120 deg. the point D is positioned behind one of the vertices.

Suggestion s for the analysis	The point D assumes the position of the Fermat point (if all the interior angles are less than 120 degrees). Use Observe to find the characteristic property of Fermat's point. Note that the property should be invariant under the cyclic permutation of labels ABC.
	Note. Optimisation reduces the reliability of observational results.

Figure 10

5.8. A minimal triangle

This example will show how to generate hypothesis for the solution of a complex optimisation tasks. The solution can be afterwards analysed with Observe. From the analysis a proof can be inferred.

Task:	In a given triangle $A B C$ inscribe the triangle DEF with minimal perimeter.				
File:	OkEditEx_8.p				
Strategy:	Given is a triangle $A B C$. We draw another triangle DEF - not necessary inscribed in ABC - and measure its perimeter. Then, by (automatically) moving the points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ along the corresponding sides of the triangle $A B C, O K$ Geometry will place the points D,E,F to obtain the triangle with minimal perimeter. A subsequent analysis will reveal the properties of the optimised triangle DEF. From the observed properties a proof can be inferred.				
Procedure/ Step	Sketch Editor command	Comment			
1	Advanced\|Shapes	Triangle	Triangle Action	Label all	Draw a triangle. Label the vertices A, B, C. Draw also another triangle, label the vertices D,E,F. You can place these vertices along the sides of $B C, C A, A B$, but this is not necessary.
2	Number\|Length, perimeter	Measure the perimeter of triangle DEF. Name the value as PerimDEF. Note. In the next step we shall move D,E,F along			

		BC,CA,AB so that PerimDEF will attain a minimal value.
3	Advanced\|Optimisation	In the form that appears choose the Advanced button. Check the entries as shown in Figure 11. In particular: Select the parameter to minimise (PerimDEF). Select the minimum option. Select 3 variable objects since we shall move three points: D,E,F. Check the Constraints option since the three points shall move along the sides of the triangle ABC. Use Fast method, if possible.

Figure 11

Figure 12

5.9. Making a macro

This simple example will shows how to create a macro.

Task:	We want to create a macro for the construction of a 'bulge' for given pair of points A, B. Each segment of a bulge measures one third of the distance between A and B. The angles between segments should measure 120 and 60 degrees.
File:	
Strategy:	OkEditEx_9.p Then the points A,B we first draw points at each third of the distance between them. polyline.

	At this point we define the macro. It is very important to think in advance what are the input data and what exactly the output data. In our case the input data are the points A and B. We want the output data to be the resulting polyline and the three points on the way.	
Procedure /Step	Sketch Editor command	Comment
1	Point\|Uniform divide Shape\|Equilateral triangle	Divide a line segment in three equal parts. Click on points A, B, and write 3 (the number of parts) in the information line. Confirm by clicking OK in the information line. Construct an equilateral triangle using the two points in the middle part of the segment..
2	Line \| Polyline	Draw the polyline for output by clicking the vertices in appropriate order.
3	Macros \|Make macro	Fill the form as shown in Figure 13. After you click OK Geometry you need to point the input and then the output objects in the same order as specified in the form. In the final form that appears you can choose to use the constructed macro only within the current session or to store it and use also elsewhere (with the Get macro command). Note. The macro is not part of the construction. The next time you open the construction the macro will not be available unless you store it retrieve it with the Advanced\|Get macro command.
	Advanced\|Execute macro	The constructed macro is a new command available in the form that appears.

Figure 13

[^0]: ${ }^{1}$ Do not confuse the Alt button with the Alt key on the keyboard.

